期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
来流马赫数对叶栅吸力面可压边界层稳定性影响研究 被引量:2
1
作者 董学智 颜培刚 韩万金 《汽轮机技术》 北大核心 2007年第2期121-124,共4页
针对叶栅高速流动稳定性预测及转捩问题,采用理论分析与实验测量相接合的方法。首先推导出正交曲线坐标系下三维扰动波的抛物化稳定性方程(PSE),在风洞实验中,采用叶栅表面压力测孔测量了设计叶栅表面静压分布。根据表面静压分布测量值... 针对叶栅高速流动稳定性预测及转捩问题,采用理论分析与实验测量相接合的方法。首先推导出正交曲线坐标系下三维扰动波的抛物化稳定性方程(PSE),在风洞实验中,采用叶栅表面压力测孔测量了设计叶栅表面静压分布。根据表面静压分布测量值,通过求解Falkner-Skan方程以获得不同来流马赫数下边界层内速度、压力、密度等参数的分布。将以上结果作为边界层平均流动值,结合数值离散化的正交曲线坐标系非线性抛物化稳定性方程(PSE)对流动的稳定性进行特征值分析。数值离散采用六阶精度差分格式,采用大步长隐格式法求解方程以保证求解的稳定性。计算结果表明本文所选用的实验叶栅由于加工量较小并采用后部加载叶型设计,边界层流动相对稳定。来流马赫数增加对边界层稳定性有微弱影响,会导致流动趋于不稳定。 展开更多
关键词 风洞实验 边界层 曲线坐标系 PSE方程 高速边界层 稳定性
下载PDF
植物水分利用效率的影响因子研究综述 被引量:35
2
作者 朱林 许兴 《干旱地区农业研究》 CSCD 北大核心 2005年第6期204-209,共6页
在概述植物水分利用效率(WUE)及其层次和测定、计算方法的基础上,介绍了影响植物WUE的内部因素(包括植物种类和品种、叶片解剖结构及生理生化特征等)和外部因素(包括气象、土壤、生物因素等),以及各自的作用机理,尤其是对气孔不均匀关... 在概述植物水分利用效率(WUE)及其层次和测定、计算方法的基础上,介绍了影响植物WUE的内部因素(包括植物种类和品种、叶片解剖结构及生理生化特征等)和外部因素(包括气象、土壤、生物因素等),以及各自的作用机理,尤其是对气孔不均匀关闭、影响Δ13C在田间条件下表现较差的原因、冠层和叶边界层对植物WUE产生的效应及其作用原理进行了探讨,并提出了今后植物WUE研究的重点和方向。 展开更多
关键词 水分利用效率 碳同位素分辨率 叶边界层 冠层 气孔不均匀关闭
下载PDF
Pseudo-spectrum Matrix Method and Its Application 被引量:1
3
作者 梁志勇 《Journal of Donghua University(English Edition)》 EI CAS 2004年第2期69-72,共4页
A base function expressed with Chebyshev polynomials is reached. The relationship between the coefficients of the partial differential equation and the base function is deduced. Using the relationship, one can obtain ... A base function expressed with Chebyshev polynomials is reached. The relationship between the coefficients of the partial differential equation and the base function is deduced. Using the relationship, one can obtain nearly the same results as those calculated by Fast Fourier Transformation (FFT). The pseudo-spectral matrix method is applied in this paper to simulate numerically the incompressible laminar boundary flow on a plate. The simulation proves to be precise and efficient. 展开更多
关键词 Pseudo-spectrum matrix method Fast Fourier Transformation Chebyshev polynomial Boundary layer
下载PDF
Studies of stability of blade cascade suction surface boundary layer
4
作者 董学智 颜培刚 韩万金 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第2期189-192,共4页
Compressible boundary layers stability on blade cascade suction surface was discussed by wind tunnel experiment and numerical solution. Three dimensional disturbance wave Parabolized Stability Equations (PSE) of ortho... Compressible boundary layers stability on blade cascade suction surface was discussed by wind tunnel experiment and numerical solution. Three dimensional disturbance wave Parabolized Stability Equations (PSE) of orthogonal Curvilinear Coordinates in compressible flow was deducted. The surface pressure of blade in wind tunnel experiment was measured. The Falkner-Skan equation was solved under the boundary conditions of experiment result, and velocity, pressure and temperature of average flow were obtained. Substituted this result for discretization of the PSE Eigenvalue Problem, the stability problem can be solved. 展开更多
关键词 wind tunnel experiment turbine blade cascade boundary layer stability PSE equation
下载PDF
Boundary Layer Development on a Concave Surface: Flow Visualization and Hot Wire Velocity Measurements
5
作者 Farouk Hachem Mahmoud Khaled Mohamad Ramadan Charbel Habchi 《Journal of Energy and Power Engineering》 2014年第7期1177-1182,共6页
Gortler vortices are key issues in the design of gas turbine blades. The present study deals with flow visualization over concave surface for gas turbine applications. The aim is to comprehend qualitatively the flow t... Gortler vortices are key issues in the design of gas turbine blades. The present study deals with flow visualization over concave surface for gas turbine applications. The aim is to comprehend qualitatively the flow trends, particularly the Gortler vortices formation and development. Gortler vortices have the shape of mushroom-like vortices regularly spaced at 25 mm. These vortices grow and increase in strength more rapidly along the surface in the case of the same grid of turbulence applied to the measuring section. The curvature radius of the studied blade is 0.5 m and the stream turbulence intensity level is 2.6%. The velocity field is measured by hot wire anemometer in the streamwise direction. The velocity profile is found to be highly distorted by the momentum transfer associated with Gortler vortices. The results are compared to Blasius flow and to literature data for a blade with curvature radius equal to 2 m. 展开更多
关键词 Gortler vortices concave surface flow visualization velocity profile gas turbine.
下载PDF
Boundary layer separation control on a highly-loaded,low-solidity compressor cascade 被引量:6
6
作者 Zhou Yang,Liu Huo-xing,Zou Zheng-ping and Ye Jian National Key Lab.on Aero-Engines,Aero-Engines Simulation Research Center,Beijing Univ.of Aero.& Astro.,Beijing 100083 《Journal of Thermal Science》 SCIE EI CAS CSCD 2010年第2期97-104,共8页
Separated flow can be effectively controlled through the management of blade boundary layer development.Numerical simulations on a highly-loaded,low-solidity compressor cascade indicate that combined blowing and sucti... Separated flow can be effectively controlled through the management of blade boundary layer development.Numerical simulations on a highly-loaded,low-solidity compressor cascade indicate that combined blowing and suction flow control technique can significantly improve cascade performance,especially in increasing the cascade loading and static pressure ratio as well as decreasing the loss coefficient.Meanwhile,it is more effective to improve cascade performance by blowing near leading edge on suction surface than suction near trailing edge.Both the locations and flow rates of blowing and suction are major impact factors of this method to cascade performance.Comparing to the baseline,the static pressure ratio increases by 15% and loss coefficient decreases by 80%,with a blowing fraction of 1.7% and a suction fraction of 1.38% of the inlet mass flow. 展开更多
关键词 combined blowing and suction flow control compressor cascade boundary layer separated flow
原文传递
The Effect of Variable Stator on Performance of a Highly Loaded Tandem Axial Flow Compressor Stage 被引量:4
7
作者 Hamzeh Eshraghi Masoud Boroomand +2 位作者 Abolghasem M.Tousi Mohammad Toude Fallah Ali Mohammadi 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第3期223-230,共8页
Increasing the aerodynamic load on compressor blades helps to obtain a higher pressure ratio in lower rotational speeds. Considering the high aerodynamic load effects and structural concerns in the design process, it ... Increasing the aerodynamic load on compressor blades helps to obtain a higher pressure ratio in lower rotational speeds. Considering the high aerodynamic load effects and structural concerns in the design process, it is possible to obtain higher pressure ratios compared to conventional compressors. However, it must be noted that imposing higher aerodynamic loads results in higher loss coemcients and deteriorates the overall performance. To avoid the loss increase, the boundary layer quality must be studied carefully over the blade suction surface. Employment of advanced shaped airfoils (like CDAs), slotted blades or other boundary layer control methods has helped the de- signers to use higher aerodynamic loads on compressor blades. Tandem cascade is a passive boundary layer control method, which is based on using the flow momentum to control the boundary layer on the suction surface and also to avoid the probable separation caused by higher aerodynamic loads. In fact, the front pressure side flow momentum helps to compensate the positive pressure gradient over the aft blade's suction side. Also, in compari- son to the single blade stators, tandem variable stators have more degrees of freedom, and this issue increases the possibility of finding enhanced conditions in the compressor off-design performance. In the current study, a 3D design procedure for an axial flow tandem compressor stage has been applied to design a highly loaded stage. Following, this design is numerically investigated using a CFD code and the stage characteristic map is reported. Also, the effect of various stator stagger angles on the compressor performance and especially on the compressor surge margin has been discussed. To validate the CFD method, another known compressor stage is presented and its performance is numerically investigated and the results are compared with available experimental results. 展开更多
关键词 Compressor Stage Highly Loaded Performance Characteristic TANDEM Variable Stator
原文传递
Computational Investigation of Blade slotting on a High-Load Low-Pressure Turbine Profile at various Reynolds Numbers:Part Ⅰ——Slotting Scheme's Verification 被引量:3
8
作者 Qiang Du Junqiang Zhu +1 位作者 Min Zhou Wei Li 《Journal of Thermal Science》 SCIE EI CAS CSCD 2011年第1期13-20,共8页
Boundary layer separation and reattachment is often an unavoidable feature of low pressure (LP) turbine,one of the main causes of this phenomenon is the high altitude low Reynolds number experienced by the modern LP t... Boundary layer separation and reattachment is often an unavoidable feature of low pressure (LP) turbine,one of the main causes of this phenomenon is the high altitude low Reynolds number experienced by the modern LP turbine stage in aero-engine.Although an excellent turbine airfoil design can avoid flow separation on certain extent,but within flight envelope,LP turbine's characteristic Reynolds number may varied greatly,so it will be still under the risk of the presence of separation bubble.In this two parts paper a new concept of slotted-blade was raised to testify the gain of the blade slotting.A high aerodynamic loading LP turbine blade IET-LPTA was under investigated with different Reynolds number.Computational results reveal that the blade slotting could be a way of choice to suppress separation bubble and reduce profile loss under the condition of low Reynolds number,although its position and geometry need to be further investigated. 展开更多
关键词 Boundary layer separation and reattachment High aerodynamic loading LP turbine blade Slotted-blade
原文传递
An Improvement on the Efficiency of a Single Rotor Transonic Compressor by Reducing the Shock Wave Strength on the Blade Suction Surfaces 被引量:4
9
作者 S. J. Geng N. X. Chen H. W. Zhang W. G. Huang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2012年第2期127-135,共9页
It is well known that increasing the rotational velocity is an effective way to increase the total pressure ratio. With increasing flow velocity especially under the condition of transonic flow in the supersonic regio... It is well known that increasing the rotational velocity is an effective way to increase the total pressure ratio. With increasing flow velocity especially under the condition of transonic flow in the supersonic region, where exist strong shock waves, the shock wave loss becomes main and important. Simultaneously, there occurs boundary layer separation due to the shock wave / boundary layer interaction. In the present paper the transonic compressor blades were studied and analyzed to find a proper and simple way to reduce the shock wave loss by optimizing the suction surface configuration or controlling the gradient of isentropic Mach number on the suction surface. A Navier-Stokes solver combined with a modified design algorithm was developed and used. The NASA single rotor for transonic flow compressor was served as a numerical example to show the effectiveness of this method. Two cases for both original and modified rotors were analyzed and compared. 展开更多
关键词 Transonic compressor shock wave loss efficiency improvement blade optimization
原文传递
Analysis of Heat Transfer Phenomenon in Magnetohydrodynamic Casson Fluid Flow Through Cattaneo–Christov Heat Diffusion Theory 被引量:7
10
作者 G. K. Ramesh J. Gireesha, +1 位作者 S. A. Shehzad, F. M. Abbasi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2017年第7期91-95,共5页
Heat transport phenomenon of two-dimensional magnetohydrodynamie Casson fluid flow by employing Cattaneo-Christov heat diffusion theory is described in this work. The term of heat absorption/generation is incorporated... Heat transport phenomenon of two-dimensional magnetohydrodynamie Casson fluid flow by employing Cattaneo-Christov heat diffusion theory is described in this work. The term of heat absorption/generation is incorporated in the mathematical modeling of present flow problem. The governing mathematical expressions are solved for velocity and temperature profiles using RKF 45 method along with shooting technique. The importance of arising nonlinear quantities namely velocity, temperature, skin-friction and temperature gradient are elaborated via plots. It is explored that the Casson parameter retarded the liquid velocity while it enhances the fluid temperature. Fhrther, we noted that temperature and thickness of temperature boundary layer are weaker in case of Cattaneo-Christov heat diffusion model when matched with the profiles obtained for Fourier's theory of heat flux. 展开更多
关键词 Hydromagnetic flow Casson fluid heat transfer Cattaneo-Christov heat diffusion model numer-ical solution
原文传递
Shock Wave Boundary Layer Interaction on Suction Side of Compressor Profile in Single Passage Test Section 被引量:4
11
作者 Pawel Flaszynski Piotr Doerffer +2 位作者 Ryszard Szwaba Piotr Kaczynski Michal Piotrowicz 《Journal of Thermal Science》 SCIE EI CAS CSCD 2015年第6期510-515,共6页
The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project(Transition Location Effect on Shock Wave Boundary Layer Interaction).In order ... The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project(Transition Location Effect on Shock Wave Boundary Layer Interaction).In order to investigate the flow structure on the suction side of a profile,a design of a generic test section in linear transonic wind tunnel was proposed.The experimental and numerical results for the flow structure investigations are shown for the flow conditions as the existing ones on the suction side of the compressor profile.Near the sidewalls the suction slots are applied for the corner flow structure control.It allows to control the Axial Velocity Density Ratio(AVDR),important parameter for compressor cascade investigations.Numerical results for Explicit Algebraic Reynolds Stress Model with transition modeling are compared with oil flow visualization,schlieren and Pressure Sensitive Paint.Boundary layer transition location is detected by Temperature Sensitive Paint. 展开更多
关键词 transonic flow shock wave laminar-turbulent transition compressor profile
原文传递
Unsteady Inflow Effects on the Wake Shed from a High-Lift LPT Blade Subjected to Boundary Layer Laminar Separation 被引量:1
12
作者 Francesca Satta Marina Ubaldi Pietro Zunino 《Journal of Thermal Science》 SCIE EI CAS CSCD 2012年第2期97-108,共12页
An experimental investigation on the near and far wake of a cascade of high-lift low-pressure turbine blades subjected to boundary layer separation over the suction side surface has been carried out, under steady and ... An experimental investigation on the near and far wake of a cascade of high-lift low-pressure turbine blades subjected to boundary layer separation over the suction side surface has been carried out, under steady and unsteady inflows. Two Reynolds number conditions, representative of take-off/landing and cruise operating conditions of the real engine, have been tested. The effect of upstream wake-boundary layer interaction on the wake shed from the profile has been investigated in a three-blade large-scale linear turbine cascade. The comparison between the wakes shed under steady and unsteady inflows has been performed through the analysis of mean velocity and Reynolds stress components measured at midspan of the central blade by means of a two-component crossed miniature hot-wire probe. The wake development has been analyzed in the region between 2% and 100% of the blade chord from the central blade trailing edge, aligned with the blade exit direction. Wake integral parameters, half-width and maximum velocity defects have been evaluated from the mean velocity distributions to quantify the modifications induced on the vane wake by the upstream wake. Moreover the thicknesses of the two wake shear layers have been considered separately in order to identify the effects of Reynolds number and incoming flow on the wake shape. The self-preserving state of the wake has been looked at, taking into account the different thicknesses of the two shear layers. The evaluation of the power density spectra of the velocity fluctuations allowed the study of the wake unsteady behavior, and the detection of the effects induced by the different operating conditions on the trailing edge vortex shedding. 展开更多
关键词 Wake-wake unsteady interaction high-lift blade profiles low-pressure turbine blade wake.
原文传递
Effects of Freestream Turbulence on Bypass Transition of Separated Boundary Layer on Low-Pressure Turbine Airfoils
13
作者 Hideo Taniguchi Hiroshi Sakai Ken-ichi Funazaki 《Journal of Thermal Science》 SCIE EI CAS CSCD 2012年第3期230-235,共6页
This paper presents experimental studies on bypass transition of separated boundary layer on low-pressure turbine airfoils,focusing on the effects of freestream turbulence on the transition process.Hot-wire probe meas... This paper presents experimental studies on bypass transition of separated boundary layer on low-pressure turbine airfoils,focusing on the effects of freestream turbulence on the transition process.Hot-wire probe measurements are performed on the suction side of an airfoil in the low-pressure linear turbine cascade at several Reynolds number conditions.Freestream turbulence is enhanced by use of turbulence grid located upstream of the cascade.The results of this experimental study show that the location of boundary layer separation does not strongly de-pend on the freestream turbulence level.However,as the freestream turbulence level increases,the size of separa-tion bubble becomes small and the location of turbulent transition moves upstream.The size of separation bubble becomes small as the Reynolds number increases.At low freestream turbulence intensity,the velocity fluctuation due to Kelvin-Helmholtz instability is observed clearly in the shear layer of the separation bubble.At high frees-tream turbulence intensity,the streak structures appear upstream of the separation location,indicating bypass transition of attached boundary layer occurs at high Reynolds number. 展开更多
关键词 AEROENGINE Low-Pressure Turbine Bypass Transition Separation Bubble
原文传递
Free-stream Turbulence Effects on the Boundary Layer of a High-lift Low-Pressure-Turbine Blade
14
作者 Simoni D. Ubaldi M. +1 位作者 Zunino p. Ampellio E. 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第3期195-206,共12页
The suction side boundary layer evolution of a high-lift low-pressure turbine cascade has been experimentally in- vestigated at low and high free-stream turbulence intensity conditions. Measurements have been carded o... The suction side boundary layer evolution of a high-lift low-pressure turbine cascade has been experimentally in- vestigated at low and high free-stream turbulence intensity conditions. Measurements have been carded out in order to analyze the boundary layer transition and separation processes at a low Reynolds nttmber, under both steady and unsteady inflows. Static pressure distributions along the blade surfaces as well as total pressure distri- butions in a downstream tangential plane have been measured to evaluate the overall aerodynamic efficiency of the blade for the different conditions. Particle. Image Velocimetry has been adopted to analyze the time-mean and time-varying velocity fields. The flow field has been surveyed in two orthogonal planes (a blade-to-blade plane and a wall-parallel one). These measurements allow the identification of the Kelvin-Helmholtz large scale cohe- rent structures shed as a consequence of the boundary layer laminar separation under steady inflow, as well as the investigation of the three-dimensional effects induced by the intermittent passage of low and high speed streaks. A close inspection of the time-mean velocity profiles as well as of the boundary layer integral parameters helps to characterize the suction side boundary layer state, thus justifying the influence of free-stream turbulence intensity on the blade aerodynamic losses measured under steady and unsteady inflows. 展开更多
关键词 profile losses high-lift profiles free-stream turbulence STREAKS unsteady flows.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部