This paper studies the problem of functional inequalities for analytic functions in classical geometric function theory.Using the di erential subordination principle and(p,q)-derivative operator,it introduces(p,q)-ana...This paper studies the problem of functional inequalities for analytic functions in classical geometric function theory.Using the di erential subordination principle and(p,q)-derivative operator,it introduces(p,q)-analog of a class of multivalently Bazilevic functions as-sociated with a limacon function,and obtains the corresponding coefficient estimates and the Fekete-Szego inequality,which extend and improve the related results for starlike functions,even q-starlike functions.展开更多
用H adam ard积(或卷积)定义线性算子In+p-1,并利用算子In+p-1研究在单位圆内解析的p叶函数类Τn+p-1(η;A,B),给出函数f(z)属于类Τn+p-1(η;A,B)的充分必要条件,考虑了函数在积分算子Fλ,p作用下的保持关系,还考虑了星像函数和凸像函...用H adam ard积(或卷积)定义线性算子In+p-1,并利用算子In+p-1研究在单位圆内解析的p叶函数类Τn+p-1(η;A,B),给出函数f(z)属于类Τn+p-1(η;A,B)的充分必要条件,考虑了函数在积分算子Fλ,p作用下的保持关系,还考虑了星像函数和凸像函数的半径.展开更多
基金Supported by Natural Science Foundation of Ningxia(2023AAC 03001)Natural Science Foundation of China(12261068)
文摘This paper studies the problem of functional inequalities for analytic functions in classical geometric function theory.Using the di erential subordination principle and(p,q)-derivative operator,it introduces(p,q)-analog of a class of multivalently Bazilevic functions as-sociated with a limacon function,and obtains the corresponding coefficient estimates and the Fekete-Szego inequality,which extend and improve the related results for starlike functions,even q-starlike functions.