针对用有限元法进行连续体结构拓扑优化时需不断重构网格来处理网格畸变和网格移动,且存在数值计算不稳定等问题,基于无网格径向点插值方法(Radial Point Interpolation Method,RPIM)对简谐激励下的连续体结构进行拓扑优化.选取节点的...针对用有限元法进行连续体结构拓扑优化时需不断重构网格来处理网格畸变和网格移动,且存在数值计算不稳定等问题,基于无网格径向点插值方法(Radial Point Interpolation Method,RPIM)对简谐激励下的连续体结构进行拓扑优化.选取节点的相对密度作为设计变量,以结构动柔度最小化为目标函数,基于带惩罚的各向同性固体微结构(Solid Isotropic Microstructure with Penalization,SIMP)模型建立简谐激励下的优化模型;采用伴随法求解得到目标函数的敏度分析公式;利用优化准则法求解优化模型.经典的二维连续体结构拓扑优化算例证明该方法的可行性和有效性.展开更多
板条状结构的设计域具有较大的长宽比,常规的拓扑优化方法无法获得清晰的、周期性的拓扑形式或求解困难。以结构的最小柔度为目标函数,单元相对密度为设计变量,构建周期性拓扑优化问题的数学模型。提出一种基于变密度理论固体各向同性...板条状结构的设计域具有较大的长宽比,常规的拓扑优化方法无法获得清晰的、周期性的拓扑形式或求解困难。以结构的最小柔度为目标函数,单元相对密度为设计变量,构建周期性拓扑优化问题的数学模型。提出一种基于变密度理论固体各向同性微结构材料惩罚模型法(Solid isotropic microstructures with penalization,SIMP)的周期性拓扑优化的方法。在数学模型中设置额外的约束条件,保证优化结构可以得到周期性的拓扑形式。通过优化准则法推导出虚拟子域设计变量的迭代公式,利用体积约束计算出拉格朗日乘子。引入过滤函数解决拓扑优化容易出现数值计算不稳定,导致棋盘格、网格依赖性等问题。利用所提出的方法,通过平面矩形悬臂梁结构算例,获得平面矩形悬臂梁结构的周期性拓扑形式。结果表明,在优化过程中,出现周期性的孔洞。随着迭代次数的增加,孔洞数目没有增加,说明该方法具有较强的稳健性。子域数目取值不同时,均可以得到具有周期性的拓扑形式,且具有良好的一致性。展开更多
文摘利用相转化纺丝法制备了Ni O-YSZ中空纤维,在其外表面负载YSZ膜1450℃共烧后形成YSZ/Ni O-YSZ双层中空纤维。阳极孔结构通过芯液(N-甲基砒咯烷酮(NMP)+乙醇)中溶剂NMP的含量来控制。当NMP含量从0、30wt%、50wt%、70wt%增加到100wt%时,阳极的孔结构由指状孔/海绵孔/指状孔三明治结构逐渐成为贯通的指状孔结构,电解质膜致密性、还原后的双层中空纤维的机械强度、阳极电导率逐渐减小,而孔隙率则增加。多孔的阴极Ag涂敷于致密的电解质膜外表面构成微管SOFC。H2/空气微管SOFC的浓差极化随着指状孔长度的增加而减小,当NMP含量为70wt%时,输出性能最佳,最大功率密度为662 m W/cm2(800℃),此时极化阻抗最小。
文摘针对用有限元法进行连续体结构拓扑优化时需不断重构网格来处理网格畸变和网格移动,且存在数值计算不稳定等问题,基于无网格径向点插值方法(Radial Point Interpolation Method,RPIM)对简谐激励下的连续体结构进行拓扑优化.选取节点的相对密度作为设计变量,以结构动柔度最小化为目标函数,基于带惩罚的各向同性固体微结构(Solid Isotropic Microstructure with Penalization,SIMP)模型建立简谐激励下的优化模型;采用伴随法求解得到目标函数的敏度分析公式;利用优化准则法求解优化模型.经典的二维连续体结构拓扑优化算例证明该方法的可行性和有效性.
文摘板条状结构的设计域具有较大的长宽比,常规的拓扑优化方法无法获得清晰的、周期性的拓扑形式或求解困难。以结构的最小柔度为目标函数,单元相对密度为设计变量,构建周期性拓扑优化问题的数学模型。提出一种基于变密度理论固体各向同性微结构材料惩罚模型法(Solid isotropic microstructures with penalization,SIMP)的周期性拓扑优化的方法。在数学模型中设置额外的约束条件,保证优化结构可以得到周期性的拓扑形式。通过优化准则法推导出虚拟子域设计变量的迭代公式,利用体积约束计算出拉格朗日乘子。引入过滤函数解决拓扑优化容易出现数值计算不稳定,导致棋盘格、网格依赖性等问题。利用所提出的方法,通过平面矩形悬臂梁结构算例,获得平面矩形悬臂梁结构的周期性拓扑形式。结果表明,在优化过程中,出现周期性的孔洞。随着迭代次数的增加,孔洞数目没有增加,说明该方法具有较强的稳健性。子域数目取值不同时,均可以得到具有周期性的拓扑形式,且具有良好的一致性。