During the seismic wave propagation process,as for the anisotropic lower medium,the speed is a function of the propagating direction.This article focuses on solving the problem how to get the transmittance angle and s...During the seismic wave propagation process,as for the anisotropic lower medium,the speed is a function of the propagating direction.This article focuses on solving the problem how to get the transmittance angle and speed,knowing the upper seismic wave propagation velocity and the angle of incidence conditions.The main theories used Snell law,Christoffel equation and speed characteristics.Taking the HTI medium as an example,the authors give the detailed solving process and draw the space velocity characteristic curve.展开更多
We investigate the propagation of electromagnetic waves in stratified anisotropic dielectric-magnetic materialsusing the integral equation method (IEM).Based on the superposition principle, we use Hertz vector formula...We investigate the propagation of electromagnetic waves in stratified anisotropic dielectric-magnetic materialsusing the integral equation method (IEM).Based on the superposition principle, we use Hertz vector formulations ofradiated fields to study the interaction of wave with matter.We derive in a new way the dispersion relation, Snell's lawand reflection/transmission coefficients by self-consistent analyses.Moreover, we find two new forms of the generalizedextinction theorem.Applying the IEM, we investigate the wave propagation through a slab and disclose the underlyingphysics, which are further verified by numerical simulations.The results lead to a unified framework of the IEM for thepropagation of wave incident either from a medium or vacuum in stratified dielectric-magnetic materials.展开更多
We experimentally study the wavelength dependence of light propagation in a water suspension of lithium niobate microcrystalline particles.First,the ballistic transmission in the visible range of the suspension is mea...We experimentally study the wavelength dependence of light propagation in a water suspension of lithium niobate microcrystalline particles.First,the ballistic transmission in the visible range of the suspension is measured.The nonlinear relationship is observed between the transport mean free path and the wavelength of the incident light.Secondly,we measure the coherent backscattering (CBS) of the sample at different wavelengths.The full width at half maximum of the CBS cone at 532 nm is about 1.24 times as large as that at 671 nm.The results indicate that the light with a long wavelength propagates further than the short wavelength light and the localization state of the short one is stronger.Finally,we investigate the light-controllable CBS experiments in the disordered materials of anisotropic scatterers,which show that the configuration of pump light with the longer wavelength and the probe light with the shorter wavelength performs better.展开更多
文摘During the seismic wave propagation process,as for the anisotropic lower medium,the speed is a function of the propagating direction.This article focuses on solving the problem how to get the transmittance angle and speed,knowing the upper seismic wave propagation velocity and the angle of incidence conditions.The main theories used Snell law,Christoffel equation and speed characteristics.Taking the HTI medium as an example,the authors give the detailed solving process and draw the space velocity characteristic curve.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10847121,10804029,and 10904036
文摘We investigate the propagation of electromagnetic waves in stratified anisotropic dielectric-magnetic materialsusing the integral equation method (IEM).Based on the superposition principle, we use Hertz vector formulations ofradiated fields to study the interaction of wave with matter.We derive in a new way the dispersion relation, Snell's lawand reflection/transmission coefficients by self-consistent analyses.Moreover, we find two new forms of the generalizedextinction theorem.Applying the IEM, we investigate the wave propagation through a slab and disclose the underlyingphysics, which are further verified by numerical simulations.The results lead to a unified framework of the IEM for thepropagation of wave incident either from a medium or vacuum in stratified dielectric-magnetic materials.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10874093 and 10804055)the National Basic Research Program of China (Grant Nos. 2007CB307002 and 2010CB934101)+1 种基金the 111 Project (Grant No. B07013)the Program for NCET
文摘We experimentally study the wavelength dependence of light propagation in a water suspension of lithium niobate microcrystalline particles.First,the ballistic transmission in the visible range of the suspension is measured.The nonlinear relationship is observed between the transport mean free path and the wavelength of the incident light.Secondly,we measure the coherent backscattering (CBS) of the sample at different wavelengths.The full width at half maximum of the CBS cone at 532 nm is about 1.24 times as large as that at 671 nm.The results indicate that the light with a long wavelength propagates further than the short wavelength light and the localization state of the short one is stronger.Finally,we investigate the light-controllable CBS experiments in the disordered materials of anisotropic scatterers,which show that the configuration of pump light with the longer wavelength and the probe light with the shorter wavelength performs better.