This study focuses on the factors that may affect the feasibility of performing elliptical anisotropy analysis on azimuthal PP and PS-wave data in HTI media, with the aim of using the modeling results as guidance in r...This study focuses on the factors that may affect the feasibility of performing elliptical anisotropy analysis on azimuthal PP and PS-wave data in HTI media, with the aim of using the modeling results as guidance in real seismic data application. Our results reveal that there is an offset limitation for both PP- and PS-waves in elliptical anisotropy fitting, and that PS-waves show a wider applicable offset range and larger observable azimuthal anisotropy than PP-waves. The major axis of the elliptical fit to the amplitudes of the R-component is perpendicular to the fracture strike, which is opposite to that in PP-wave analysis. The azimuthal interval travel time of PS-waves shows a nearly elliptical distribution and the major axis of the fit ellipse is perpendicular to the fracture strike, which is same as that in PP-wave analysis. For data within the applicable offset range, the anisotropic magnitude obtained from amplitude and travel time attributes of PP- and PS-waves exhibits a dependence on fracture density, and the major to minor axis ratio of the fit ellipse may be used to infer the relative distribution of fracture densities.展开更多
Underground fractures play an important role in the storage and movement of hydrocarbon fluid. Fracture rock physics has been the useful bridge between fracture parameters and seismic response. In this paper, we aim t...Underground fractures play an important role in the storage and movement of hydrocarbon fluid. Fracture rock physics has been the useful bridge between fracture parameters and seismic response. In this paper, we aim to use seismic data to predict subsurface fractures based on rock physics. We begin with the construction of fracture rock physics model. Using the model, we may estimate P-wave velocity, S-wave velocity and fracture rock physics parameters. Then we derive a new approximate formula for the analysis of the relationship between fracture rock physics parameters and seismic response, and we also propose the method which uses seismic data to invert the elastic and rock physics parameters of fractured rock. We end with the method verification, which includes using well-logging data to confirm the reliability of fracture rock physics effective model and utilizing real seismic data to validate the applicability of the inversion method. Tests show that the fracture rock physics effective model may be used to estimate velocities and fracture rock physics parameters reliably, and the inversion method is resultful even when the seismic data is added with random noise. Real data test also indicates the inversion method can be applied into the estimation of the elastic and fracture weaknesses parameters in the target area.展开更多
文摘This study focuses on the factors that may affect the feasibility of performing elliptical anisotropy analysis on azimuthal PP and PS-wave data in HTI media, with the aim of using the modeling results as guidance in real seismic data application. Our results reveal that there is an offset limitation for both PP- and PS-waves in elliptical anisotropy fitting, and that PS-waves show a wider applicable offset range and larger observable azimuthal anisotropy than PP-waves. The major axis of the elliptical fit to the amplitudes of the R-component is perpendicular to the fracture strike, which is opposite to that in PP-wave analysis. The azimuthal interval travel time of PS-waves shows a nearly elliptical distribution and the major axis of the fit ellipse is perpendicular to the fracture strike, which is same as that in PP-wave analysis. For data within the applicable offset range, the anisotropic magnitude obtained from amplitude and travel time attributes of PP- and PS-waves exhibits a dependence on fracture density, and the major to minor axis ratio of the fit ellipse may be used to infer the relative distribution of fracture densities.
基金supported by the National Basic Research Program of China(Grant Nos.2013CB228604,2014CB239201)the National Oil and Gas Major Projects of China(Grant No.2011ZX05014-001-010HZ)+2 种基金CNPC Innovation Foundation(Grant No.2011D-5006-0301)the Fundamental Research Funds for the Central Universities in China(Grant No.14CX06015A)SINOPEC Key Laboratory of Geophysics
文摘Underground fractures play an important role in the storage and movement of hydrocarbon fluid. Fracture rock physics has been the useful bridge between fracture parameters and seismic response. In this paper, we aim to use seismic data to predict subsurface fractures based on rock physics. We begin with the construction of fracture rock physics model. Using the model, we may estimate P-wave velocity, S-wave velocity and fracture rock physics parameters. Then we derive a new approximate formula for the analysis of the relationship between fracture rock physics parameters and seismic response, and we also propose the method which uses seismic data to invert the elastic and rock physics parameters of fractured rock. We end with the method verification, which includes using well-logging data to confirm the reliability of fracture rock physics effective model and utilizing real seismic data to validate the applicability of the inversion method. Tests show that the fracture rock physics effective model may be used to estimate velocities and fracture rock physics parameters reliably, and the inversion method is resultful even when the seismic data is added with random noise. Real data test also indicates the inversion method can be applied into the estimation of the elastic and fracture weaknesses parameters in the target area.