Hybrid mecihanism is a new type of planar controllable mechanism. Position control acouracy of system determines the output aconracy of the mechanism. In order to achieve the desired high acowacy, nonlinear factors as...Hybrid mecihanism is a new type of planar controllable mechanism. Position control acouracy of system determines the output aconracy of the mechanism. In order to achieve the desired high acowacy, nonlinear factors as friction nmst be accurately compensated in the real-time servo control algoritinn. In this paper, the model of a hybrid five-bar mechanism is introduced. In terms of the characteristics of the hybrid mechanism, a hybrid intelligent control algorithm based on proportional-integral-derivative (PID) control and cerebellar model articulation control techniques was presented and used to perform control of hybrid five-bar mechanism for the lust time. The sinmulation results show that the hybrid control method can improve the control effect remarkably, compared with the traditional PID control strategy.展开更多
文摘Hybrid mecihanism is a new type of planar controllable mechanism. Position control acouracy of system determines the output aconracy of the mechanism. In order to achieve the desired high acowacy, nonlinear factors as friction nmst be accurately compensated in the real-time servo control algoritinn. In this paper, the model of a hybrid five-bar mechanism is introduced. In terms of the characteristics of the hybrid mechanism, a hybrid intelligent control algorithm based on proportional-integral-derivative (PID) control and cerebellar model articulation control techniques was presented and used to perform control of hybrid five-bar mechanism for the lust time. The sinmulation results show that the hybrid control method can improve the control effect remarkably, compared with the traditional PID control strategy.