A finite element method with boundary element method (FEM-BEM) is presented for computing electromagnetic induction. The features of an edge element method including the volume and surface edge element method are inve...A finite element method with boundary element method (FEM-BEM) is presented for computing electromagnetic induction. The features of an edge element method including the volume and surface edge element method are investigated in depth. Surface basis functions of edge elements to an arbitrary shape of target are derived according to the geometrical property of basis functions and applied to discretize the surface integral equation for 3-D general targets. The proposed model is presented to compute resonant frequencies and surface current of underground unexplored ordnance (UXO), and then the electromagnetic responses of single target with different frequencies and positions of sensor are simulated and results are validated by experiments.展开更多
Since the specifications of most of the existing context-sensitive graph grammars tend to be either too intricate or not intuitive, a novel context-sensitive graph grammar formalism, called context-attributed graph gr...Since the specifications of most of the existing context-sensitive graph grammars tend to be either too intricate or not intuitive, a novel context-sensitive graph grammar formalism, called context-attributed graph grammar(CAGG), is proposed. In order to resolve the embedding problem, context information of a graph production in the CAGG is represented in the form of context attributes of the nodes involved. Moreover, several properties of a set of confluent CAGG productions are characterized, and then an algorithm based on them is developed to decide whether or not a set of productions is confluent, which provides the foundation for the design of efficient parsing algorithms. It can also be shown through the comparison of CAGG with several typical context-sensitive graph grammars that CAGG is more succinct and, at the same time, more intuitive than the others, making it more suitably and effortlessly applicable to the specification of visual languages.展开更多
Objective: To investigate the influence of occlusal splint thickness on mandibular movement. Methods: Stabilization occlusal splints of 3, 5 and 7 mm thickness were respectively used during clenching from light contac...Objective: To investigate the influence of occlusal splint thickness on mandibular movement. Methods: Stabilization occlusal splints of 3, 5 and 7 mm thickness were respectively used during clenching from light contact in intercuspal position and the movement of condyles and incisor point were recorded in 5 healthy subjects. Results:The condyles moved anteriorly and superiorly without wearing occlusal splint. When wearing the occlusal splints the condyles displaced anteriorly and inferiorly. The distance of displacement increased gradually with raising the thickness of splint, though the significant difference was just found in right condyle in superior- inferior movement. The condyles went again on a path of anterior and superior direction when subjects clenched from the displaced position. In right condyle the displacement was significantly greater at 7 mm splint than that at 3 mm splint both in anterior-posterior and inferior-superior direction, while in left condyle only in anterior-posterior direction. Meanwhile, the incisal point movement was larger at 7 mm splint than at 3 mm splint in inferior-superior direction. In tapping movement there were no significant differences in condyle movement between the different thickness of occlusal splint. However, the coefficient of variation in total cycle time was the greatest when wearing the splint of 7 mm. Conclusion: Occlusal splint of 7 mm has greater effect than that of 3 mm on condyle movement, but no obvious difference with occlusal splint of 5 mm. When occlusal splint of 7 mm is inserted, the stability of condyle might be influenced during tapping movement.展开更多
Based on the basic principle of the finite element method, the implicit composite element method for numerical simulation of seepage in underground engineering is proposed. In the simulation, the faults and drainage h...Based on the basic principle of the finite element method, the implicit composite element method for numerical simulation of seepage in underground engineering is proposed. In the simulation, the faults and drainage holes are set implicitly in the model elements without adding additional elements. Elements containing fault or drainage-hole data are termed composite elements. Then, their information data in model could be obtained. By determining the osmotic transmission matrix of the composite elements, the permeability coefficient matrix is then obtained. The method was applied to the numerical simulation of the seepage field around the underground powerhouse of the Ganhe Pumping Station in Yunnan, China, using a compiled three-dimensional finite element method calculation program. The rock mass around the site includes two faults. The seepage field in the rock mass was analyzed at different stages of the engineering project. The results show that, before the excavation of the underground caverns, the rock mass seepage is affected by the faults and the groundwater permeated down along the tangential fault plane. After the excavation of the caverns during the operation period, the groundwater is basically drained away and the underground caverns are mostly above the groundwater level. Thus, the calculation results of the engineering example verify the implicit composite method for the simulation of faults and drainage holes. This method can well meet the calculation demands of practical engineering.展开更多
The study on the special phenomenon,occurrence process and control mechanism of gasoline-air mixture thermal ignition in underground oil depots is of important academic and applied value for enriching scientific theor...The study on the special phenomenon,occurrence process and control mechanism of gasoline-air mixture thermal ignition in underground oil depots is of important academic and applied value for enriching scientific theories of explosion safety,developing protective technology against fire and decreasing the number of fire accidents.In this paper,the research on thermal ignition process of gasoline-air mixture in model underground oil depots tunnel has been carried out by using experiment and numerical simulation methods.The calculation result has been demonstrated by the experiment data.The five stages of thermal ignition course,which are slow oxidation stage,rapid oxidation stage,fire stage,flameout stage and quench stage,have been firstly defined and accurately descried.According to the magnitude order of concentration,the species have been divided into six categories,which lay the foundation for explosion-proof design based on the role of different species.The influence of space scale on thermal ignition in small-scale space has been found,and the mechanism for not easy to fire is that the wall reflection causes the reflux of fluids and changes the distribution of heat and mass,so that the progress of chemical reactions in the whole space are also changed.The novel mathematical model on the basis of unification chemical kinetics and thermodynamics established in this paper provides supplementary means for the analysis of process and mechanism of thermal ignition.展开更多
At low Reynolds numbers,the variable flexibility of flapping insect wings is considered essential in improving the favorable aerodynamic forces.To further explore whether significant aerodynamic coupling exists betwee...At low Reynolds numbers,the variable flexibility of flapping insect wings is considered essential in improving the favorable aerodynamic forces.To further explore whether significant aerodynamic coupling exists between the microstructure and passive flexible deformation,this paper proposes three technical comparison airfoils:a corrugated wing with deformation,a symmetric flat plate wing with deformation,and a corrugated wing without deformation.Based on STAR-CCM+software,this paper numerically solves the Navier-Stokes equations using the fluid-structure interaction method.The results show that the aerodynamic performance of the flexible corrugated wing is better than that of the rigid corrugated wing,and its lift and thrust are both improved to a certain extent,and the thrust efficiency of the flexible corrugated wing is significantly higher than that of the flexible flat plate.Although the thrust is improved,a part of the lift is lost,and as the flapping amplitude increases past 35°,the disparity gradually increases.A comparison of the flexible technical airfoils shows that the corrugated structure promotes thrust and retards lift,which is closely related to the formation and dissipation of strong vortex rings during the downstroke phase.On the premise of maintaining typical flapping without falling,dragonflies can fly with skillful efficiency by adjusting the way they flap their wings.The results of this work provide new insight into the formation and role of thrust in flapping maneuvering flight and provide a specific reference for developing new bionic flapping-wing aircraft.展开更多
文摘A finite element method with boundary element method (FEM-BEM) is presented for computing electromagnetic induction. The features of an edge element method including the volume and surface edge element method are investigated in depth. Surface basis functions of edge elements to an arbitrary shape of target are derived according to the geometrical property of basis functions and applied to discretize the surface integral equation for 3-D general targets. The proposed model is presented to compute resonant frequencies and surface current of underground unexplored ordnance (UXO), and then the electromagnetic responses of single target with different frequencies and positions of sensor are simulated and results are validated by experiments.
基金The National Natural Science Foundation of China(No.60571048,60673186,60736015)the National High Technology Researchand Development Program of China(863Program)(No.2007AA01Z178)
文摘Since the specifications of most of the existing context-sensitive graph grammars tend to be either too intricate or not intuitive, a novel context-sensitive graph grammar formalism, called context-attributed graph grammar(CAGG), is proposed. In order to resolve the embedding problem, context information of a graph production in the CAGG is represented in the form of context attributes of the nodes involved. Moreover, several properties of a set of confluent CAGG productions are characterized, and then an algorithm based on them is developed to decide whether or not a set of productions is confluent, which provides the foundation for the design of efficient parsing algorithms. It can also be shown through the comparison of CAGG with several typical context-sensitive graph grammars that CAGG is more succinct and, at the same time, more intuitive than the others, making it more suitably and effortlessly applicable to the specification of visual languages.
文摘Objective: To investigate the influence of occlusal splint thickness on mandibular movement. Methods: Stabilization occlusal splints of 3, 5 and 7 mm thickness were respectively used during clenching from light contact in intercuspal position and the movement of condyles and incisor point were recorded in 5 healthy subjects. Results:The condyles moved anteriorly and superiorly without wearing occlusal splint. When wearing the occlusal splints the condyles displaced anteriorly and inferiorly. The distance of displacement increased gradually with raising the thickness of splint, though the significant difference was just found in right condyle in superior- inferior movement. The condyles went again on a path of anterior and superior direction when subjects clenched from the displaced position. In right condyle the displacement was significantly greater at 7 mm splint than that at 3 mm splint both in anterior-posterior and inferior-superior direction, while in left condyle only in anterior-posterior direction. Meanwhile, the incisal point movement was larger at 7 mm splint than at 3 mm splint in inferior-superior direction. In tapping movement there were no significant differences in condyle movement between the different thickness of occlusal splint. However, the coefficient of variation in total cycle time was the greatest when wearing the splint of 7 mm. Conclusion: Occlusal splint of 7 mm has greater effect than that of 3 mm on condyle movement, but no obvious difference with occlusal splint of 5 mm. When occlusal splint of 7 mm is inserted, the stability of condyle might be influenced during tapping movement.
基金supported by the National Key Basic Research Program of China(Grant No.2015CB057904)the Major Program of the National Natural Science Foundation of China(Grant No.91215301)+1 种基金the National Natural Science Foundation of China(Grant Nos.51279136&51209164)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20130141110015)
文摘Based on the basic principle of the finite element method, the implicit composite element method for numerical simulation of seepage in underground engineering is proposed. In the simulation, the faults and drainage holes are set implicitly in the model elements without adding additional elements. Elements containing fault or drainage-hole data are termed composite elements. Then, their information data in model could be obtained. By determining the osmotic transmission matrix of the composite elements, the permeability coefficient matrix is then obtained. The method was applied to the numerical simulation of the seepage field around the underground powerhouse of the Ganhe Pumping Station in Yunnan, China, using a compiled three-dimensional finite element method calculation program. The rock mass around the site includes two faults. The seepage field in the rock mass was analyzed at different stages of the engineering project. The results show that, before the excavation of the underground caverns, the rock mass seepage is affected by the faults and the groundwater permeated down along the tangential fault plane. After the excavation of the caverns during the operation period, the groundwater is basically drained away and the underground caverns are mostly above the groundwater level. Thus, the calculation results of the engineering example verify the implicit composite method for the simulation of faults and drainage holes. This method can well meet the calculation demands of practical engineering.
文摘The study on the special phenomenon,occurrence process and control mechanism of gasoline-air mixture thermal ignition in underground oil depots is of important academic and applied value for enriching scientific theories of explosion safety,developing protective technology against fire and decreasing the number of fire accidents.In this paper,the research on thermal ignition process of gasoline-air mixture in model underground oil depots tunnel has been carried out by using experiment and numerical simulation methods.The calculation result has been demonstrated by the experiment data.The five stages of thermal ignition course,which are slow oxidation stage,rapid oxidation stage,fire stage,flameout stage and quench stage,have been firstly defined and accurately descried.According to the magnitude order of concentration,the species have been divided into six categories,which lay the foundation for explosion-proof design based on the role of different species.The influence of space scale on thermal ignition in small-scale space has been found,and the mechanism for not easy to fire is that the wall reflection causes the reflux of fluids and changes the distribution of heat and mass,so that the progress of chemical reactions in the whole space are also changed.The novel mathematical model on the basis of unification chemical kinetics and thermodynamics established in this paper provides supplementary means for the analysis of process and mechanism of thermal ignition.
基金the National Natural Science Foundation of China(Grant No.11862017).
文摘At low Reynolds numbers,the variable flexibility of flapping insect wings is considered essential in improving the favorable aerodynamic forces.To further explore whether significant aerodynamic coupling exists between the microstructure and passive flexible deformation,this paper proposes three technical comparison airfoils:a corrugated wing with deformation,a symmetric flat plate wing with deformation,and a corrugated wing without deformation.Based on STAR-CCM+software,this paper numerically solves the Navier-Stokes equations using the fluid-structure interaction method.The results show that the aerodynamic performance of the flexible corrugated wing is better than that of the rigid corrugated wing,and its lift and thrust are both improved to a certain extent,and the thrust efficiency of the flexible corrugated wing is significantly higher than that of the flexible flat plate.Although the thrust is improved,a part of the lift is lost,and as the flapping amplitude increases past 35°,the disparity gradually increases.A comparison of the flexible technical airfoils shows that the corrugated structure promotes thrust and retards lift,which is closely related to the formation and dissipation of strong vortex rings during the downstroke phase.On the premise of maintaining typical flapping without falling,dragonflies can fly with skillful efficiency by adjusting the way they flap their wings.The results of this work provide new insight into the formation and role of thrust in flapping maneuvering flight and provide a specific reference for developing new bionic flapping-wing aircraft.