Named Data Networking(NDN)improves the data delivery efficiency by caching contents in routers. To prevent corrupted and faked contents be spread in the network,NDN routers should verify the digital signature of each ...Named Data Networking(NDN)improves the data delivery efficiency by caching contents in routers. To prevent corrupted and faked contents be spread in the network,NDN routers should verify the digital signature of each published content. Since the verification scheme in NDN applies the asymmetric encryption algorithm to sign contents,the content verification overhead is too high to satisfy wire-speed packet forwarding. In this paper, we propose two schemes to improve the verification performance of NDN routers to prevent content poisoning. The first content verification scheme, called "user-assisted",leads to the best performance, but can be bypassed if the clients and the content producer collude. A second scheme, named ``RouterCooperation ‘', prevents the aforementioned collusion attack by making edge routers verify the contents independently without the assistance of users and the core routers no longer verify the contents. The Router-Cooperation verification scheme reduces the computing complexity of cryptographic operation by replacing the asymmetric encryption algorithm with symmetric encryption algorithm.The simulation results demonstrate that this Router-Cooperation scheme can speed up18.85 times of the original content verification scheme with merely extra 80 Bytes transmission overhead.展开更多
The cooperative diversity schemes can effectively create a virtual antenna array for path fading combating multiin wireless channels. However, a lot of cooperative diversity schemes require perfect synchronization whi...The cooperative diversity schemes can effectively create a virtual antenna array for path fading combating multiin wireless channels. However, a lot of cooperative diversity schemes require perfect synchronization which is, in practice, difficult and even impossible to be realized. In this paper, we propose an asynchronous cooperative diversity scheme based on the linear dispersion code (LDC). By adding the zero padding (ZP) between linear dispersion codewords, our scheme mitigates the effect of asynchronism effectively. The length of ZP is decided by relative timing errors between different relays. Besides, an easy decoding method of our scheme is given in this paper by restructuring the stacked channel matrix.展开更多
An improved MEW ( muhiplicative exponent weighting) algorithm, SLE-MEW is proposed for vertical handoff decision in heterogeneous wireless networks. It introduces the SINR( signal to interference plus noise ratio)...An improved MEW ( muhiplicative exponent weighting) algorithm, SLE-MEW is proposed for vertical handoff decision in heterogeneous wireless networks. It introduces the SINR( signal to interference plus noise ratio) effects, LS (least square) and information entropy method into the algorithm. An attribute matrix is constructed considering the SINR in the source network and the equivalent SINR in the target network, the required bandwidth, the traffic cost and the available bandwidth of participating access networks. Handoff decision meeting multi-attribute QoS(quality of serv- ice) requirement is made according to the traffic features. The subjective weight relation of decision elements is determined with LS method. The information entropy method is employed to derive the objective weights of the evaluation criteria, and lead to the comprehensive weight. Finally decision is made using MEW algorithm based on the attribute matrix and weight vector. Four 3GPP( the 3rd generation partnership project) defined traffic classes are considered in performance evaluation. The simulation results have shown that the proposed algorithm can provide satisfactory performance fitting to the characteristics of the traffic.展开更多
基金financially supported by Shenzhen Key Fundamental Research Projects(Grant No.:JCYJ20170306091556329).
文摘Named Data Networking(NDN)improves the data delivery efficiency by caching contents in routers. To prevent corrupted and faked contents be spread in the network,NDN routers should verify the digital signature of each published content. Since the verification scheme in NDN applies the asymmetric encryption algorithm to sign contents,the content verification overhead is too high to satisfy wire-speed packet forwarding. In this paper, we propose two schemes to improve the verification performance of NDN routers to prevent content poisoning. The first content verification scheme, called "user-assisted",leads to the best performance, but can be bypassed if the clients and the content producer collude. A second scheme, named ``RouterCooperation ‘', prevents the aforementioned collusion attack by making edge routers verify the contents independently without the assistance of users and the core routers no longer verify the contents. The Router-Cooperation verification scheme reduces the computing complexity of cryptographic operation by replacing the asymmetric encryption algorithm with symmetric encryption algorithm.The simulation results demonstrate that this Router-Cooperation scheme can speed up18.85 times of the original content verification scheme with merely extra 80 Bytes transmission overhead.
基金Supported by the National High Technology Research and Development Program of China ( No. 2006AA01Z270), the Programane of Introducing Talents of Discipline to University of China (No. B08038) and the Joint Funds of National Natural Science Foundation of China-Guangdong Province (No. U0635003).
文摘The cooperative diversity schemes can effectively create a virtual antenna array for path fading combating multiin wireless channels. However, a lot of cooperative diversity schemes require perfect synchronization which is, in practice, difficult and even impossible to be realized. In this paper, we propose an asynchronous cooperative diversity scheme based on the linear dispersion code (LDC). By adding the zero padding (ZP) between linear dispersion codewords, our scheme mitigates the effect of asynchronism effectively. The length of ZP is decided by relative timing errors between different relays. Besides, an easy decoding method of our scheme is given in this paper by restructuring the stacked channel matrix.
基金National Natural Science Foundation of China (No.60872018 No.60902015)+1 种基金Natural Science Foundation of Education Committee of Jiangsu Province(No.11KJB510014)Scientific Research Foundation of NUPT (No.NY210004)
文摘An improved MEW ( muhiplicative exponent weighting) algorithm, SLE-MEW is proposed for vertical handoff decision in heterogeneous wireless networks. It introduces the SINR( signal to interference plus noise ratio) effects, LS (least square) and information entropy method into the algorithm. An attribute matrix is constructed considering the SINR in the source network and the equivalent SINR in the target network, the required bandwidth, the traffic cost and the available bandwidth of participating access networks. Handoff decision meeting multi-attribute QoS(quality of serv- ice) requirement is made according to the traffic features. The subjective weight relation of decision elements is determined with LS method. The information entropy method is employed to derive the objective weights of the evaluation criteria, and lead to the comprehensive weight. Finally decision is made using MEW algorithm based on the attribute matrix and weight vector. Four 3GPP( the 3rd generation partnership project) defined traffic classes are considered in performance evaluation. The simulation results have shown that the proposed algorithm can provide satisfactory performance fitting to the characteristics of the traffic.