采用非模型拟合法研究了Mg_(17)Al_(12)储氢合金燃烧合成过程动力学,为今后规模化制备该合金提供理论指导。首先比较不同样品燃烧合成过程热效应及产物相组分,指出压片预处理方法及小尺寸Al粉均有利于促进合金化反应;然后分别采用Kissin...采用非模型拟合法研究了Mg_(17)Al_(12)储氢合金燃烧合成过程动力学,为今后规模化制备该合金提供理论指导。首先比较不同样品燃烧合成过程热效应及产物相组分,指出压片预处理方法及小尺寸Al粉均有利于促进合金化反应;然后分别采用Kissinger法和Flynn-Wall-Ozawa法计算出该反应活化能分别为140.5和142 k J/mol,对应的最概然机制函数为G(α)=[-ln(1-α)]1/3,符合Avrami-Erofeev方程的随机成核和随后生长机制。最后通过反应前后期产物相组成分析,揭示该燃烧合成过程中Mg-Al合金化反应机制。展开更多
The effects of homogenization parameters on the microstructure evolution and tensile behavior of a balanced Al−Mg−Si alloy were investigated using the optical microscope,scanning electron microscope,X-ray diffraction,...The effects of homogenization parameters on the microstructure evolution and tensile behavior of a balanced Al−Mg−Si alloy were investigated using the optical microscope,scanning electron microscope,X-ray diffraction,electron probe microanalyzer,differential scanning calorimetry,electrical conductivity test,and tensile test.The results show that Mg_(2)Si andβ-AlFeSi are the main intermetallic compounds in the as-cast structure,and Mg solute microsegregation is predominant inside the dendrite cell.The prediction of the full dissolution time of Mg_(2)Si by a kinetic model is consistent with the experiment.Theβ-AlFeSi in the alloy exhibits high thermal stability and mainly undergoes dissolution and coarsening during homogenization at 560℃,and only a small portion is converted toα-AlFeSi.The optimal homogenization parameters are determined as 560℃and 360 min,when considering the evolution of microstructure and resource savings.Both the strength and ductility of the alloy increased after homogenization.展开更多
To analyze the effects of strain rate and temperature on the flow stress of 2519A aluminum alloy, the dynamic mechanical properties of 2519A aluminum alloy were measured by dynamic impact tests and quasi-static tensil...To analyze the effects of strain rate and temperature on the flow stress of 2519A aluminum alloy, the dynamic mechanical properties of 2519A aluminum alloy were measured by dynamic impact tests and quasi-static tensile tests. The effects of strain rate and temperature on the microstructure evolution were investigated by optical microscopy (OM) and transmission electron microscopy (TEM). The experimental results indicate that 2519A aluminum alloy exhibits strain-rate dependence and temperature susceptibility under dynamic impact. The constitutive constants for Johnson--Cook material model were determined by the quasi-static tests and Hopkinson bar experiments using the methods of variable separation and nonlinear fitting. The constitutive equation seems to be consistent with the experimental results, which provides reference for mechanical characteristics and numerical simulation of ballistic performance.展开更多
The microstructure evolution of Al-Zn-Mg-Cu alloy was studied by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) during different rate cooling processes. Based on the DSC results...The microstructure evolution of Al-Zn-Mg-Cu alloy was studied by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) during different rate cooling processes. Based on the DSC results, the kinetics analysis was carried out. The results indicate that the precipitation of η phase is the predominant transformation for the alloy during the cooling process after the solution treatment. And the η phase nucleates on dispersoids and at grain boundaries. The amount of η phase decreases with increasing cooling rate, and reduces by 75% as the cooling rate increases from 5 to 50 ℃/min. The kinetics of the precipitation of η phase can be described by the Kamamoto transformation model when the cooling rate is a constant.展开更多
The nonlinear mixed-effects model with stochastic differential equations (SDEs) is used to model the population pharmacokinetic (PPK) data that are extended from ordinary differential equations (ODEs) by adding ...The nonlinear mixed-effects model with stochastic differential equations (SDEs) is used to model the population pharmacokinetic (PPK) data that are extended from ordinary differential equations (ODEs) by adding a stochastic term to the state equation. Compared with the ODEs, the SDEs can model correlated residuals which are ubiquitous in actual pharmacokinetic problems. The Bayesian estimation is provided for nonlinear mixed-effects models based on stochastic differential equations. Combining the Gibbs and the Metropolis-Hastings algorithms, the population and individual parameter values are given through the parameter posterior predictive distributions. The analysis and simulation results show that the performance of the Bayesian estimation for mixed-effects SDEs model and analysis of population pharmacokinetic data is reliable. The results suggest that the proposed method is feasible for population pharmacokinetic data.展开更多
To improve the understanding of coupling effect between dynamic recrystallization(DRX)behaviors and flow behaviors of as-cast AlCu4 SiMg, a finite element(FE) simulation equipped with the models of DRX evolution was i...To improve the understanding of coupling effect between dynamic recrystallization(DRX)behaviors and flow behaviors of as-cast AlCu4 SiMg, a finite element(FE) simulation equipped with the models of DRX evolution was implemented. A series of isothermal compression tests were performed primarily on a Gleeble-3500 thermo-mechanical simulator in a temperature range of 648-748 K and a strain rate range of 0.01-10 s-1.According to the measured true stress-strain data,the strain hardening rate curves(dσ/dε versus σ) were plotted to identify the critical strains for DRX initiation(εc). By further derivation of the related material constants, the DRX volume fraction equation and the strain for 50% DRX(ε0.5) equation were solved. Accordingly, the aforementioned DRX equations were implanted into the FE model to conduct a series of simulations for the isothermal compression tests. The results show that during the evolution of DRX volume fraction at a fixed strain rate, the strain required for the same amount of DRX volume fraction increases with decreasing temperature. In contrast, at a fixed temperature, it increases with increasing strain rate. Ultimately, the DRX kinetics model of AlCu4 SiMg alloy and the consequence of the FE analysis were validated by microstructure observations.展开更多
The feasibility and adsorption effect of lignite activated carbon for phenol removal from aqueous solutions were evaluated and investigated. A series of tests were performed to look into the influence of various exper...The feasibility and adsorption effect of lignite activated carbon for phenol removal from aqueous solutions were evaluated and investigated. A series of tests were performed to look into the influence of various experimental parameters such as contact time, initial phenol concentration, temperature, and pH value on the adsorption of phenol by lignite activated carbon. The experimental data were fitted well with the pseudo-second-order kinetic model. The adsorption is an endothermic process and conforms to Freundlich thermodynamic model. The results indicate that the lignite activated carbon is suitable to be used as an adsorbent material for adsorption of phenol from aqueous solutions.展开更多
This study is focused on the kinetic characteristics of photocatalytic degradation of gaseous organic compounds on modified titanium dioxide/activated carbon composite photocatalyst(MTA).The MTA,which co-doping with i...This study is focused on the kinetic characteristics of photocatalytic degradation of gaseous organic compounds on modified titanium dioxide/activated carbon composite photocatalyst(MTA).The MTA,which co-doping with iron(Fe) and nitrogen(N),was synthesized by a sol-gel method,and its photocatalytic performance was investigated under different reaction conditions.The experimental data obtained were tested by the zero,first and second order kinetic model,and the factors affecting the kinetic model were analyzed.It was clearly demonstrated that the experimental data of toluene and acetone on MTA fit quite well with second order kinetic model equation,but the experimental data of formaldehyde fits well with zero order kinetic model equation.展开更多
In order to increase the efficiency and reliability of the dynamic analysis for flexible planar linkage containing the coupling of multi-energy domains, a method based on bond graph is introduced. From the viewpoint o...In order to increase the efficiency and reliability of the dynamic analysis for flexible planar linkage containing the coupling of multi-energy domains, a method based on bond graph is introduced. From the viewpoint of power conservation, the peculiar property of bond graph multiport element MTF is discussed. The procedure of modeling planar flexible muhibody mechanical systems by bond graphs and its dynamic principle are deseribed. To overcome the algebraic difficulty brought by differential causality anti nonlinear junction structure, the constraint forces at joints can be considered as unknown effort sources and added to the corresponding O-junctions of system bond graph model. As a result, the automatic modeling on a computer is realized. The validity of the procedure is illustrated by a practical example.展开更多
Thermal analysis is one of the most used techniques for analyzing the behavior of aluminum alloys in order to analyze the precipitation of Guinier-Preston(GP)zones and different phases formed.In the present work,the b...Thermal analysis is one of the most used techniques for analyzing the behavior of aluminum alloys in order to analyze the precipitation of Guinier-Preston(GP)zones and different phases formed.In the present work,the behavior of the Al-5.46wt.%Zn-1.67wt.%Mg alloy was studied.The mechanism and kinetics of precipitation of the GP,the metastable phaseη′and the equilibrium phaseηwere investigated using DSC carried out between room temperature and 480℃at heating rates of 5,10,15 and 20℃/min.The apparent activation energies,calculated by DSC from isothermal calculation method using JMAK model,for GP,η′andηwere 56,79 and 96 kJ/mol,respectively,and those calculated by non-isothermal calculation method using Kissinger methods were 57,82 and 99 kJ/mol,respectively.The values of Avrami parameter,n,from isothermal calculation,during the precipitation of the GP,η′andηwere 1.103,1.9075 and 1.92,respectively,and those calculated by non-isothermal were 0.86,2.30 and 2.24,respectively.The results show that GP zones formation is governed by the migration of Zn and Mg atoms while the precipitation of theη′metastable phase and theηstable phase is governed by both the migration and the diffusion of the solute atoms.展开更多
The topography of gear meshing interfaces is one of the key factors affecting the dynamic characteristics of the gear transmission system.In order to obtain the contact characteristics of meshing gear pair with differ...The topography of gear meshing interfaces is one of the key factors affecting the dynamic characteristics of the gear transmission system.In order to obtain the contact characteristics of meshing gear pair with different surface micro-topographies,an interface feature model and a tribo-dynamics coupling model for the gear system are proposed in this paper.The effects of the gear tooth surface micro-topography on the oil film distribution,contact damping and friction are considered.The time-varying meshing stiffness and the static transmission error are included in the abovementioned models.An exemplary gear pair is analyzed using the proposed models to investigate the influence of the surface micro-topography on the dynamic characteristics of gear system under different micro-topographies and input torque conditions.Simulation results show that the effects of gear tooth micro-topography on the gear dynamic responses(including the friction and the vicious damping at the gear meshing interface and the vibration in the direction of offline of action)are highly dependent on the regularity of tooth surface.The vibration and noise can be significantly controlled by manufacturing a regular gear tooth profiles instead of random profiles.展开更多
A new kind of inertial piezoelectric actuator for a micro in-pipe robot is proposed and studied. The actuator is composed of a body, corresponding to a mass rod, and four elastic legs. Each leg is a composite piezoele...A new kind of inertial piezoelectric actuator for a micro in-pipe robot is proposed and studied. The actuator is composed of a body, corresponding to a mass rod, and four elastic legs. Each leg is a composite piezoelectric bimorph beam, made up of a middle metal element, an upper and lower piezoelectric elements. The mechanism is driven by an asymmetric waveform voltage, such as saw-toothed waveform, and utilizes the dynamic relationship between the maximum static friction force and the inertial force. To study the actuator, firstly, the constituent equation of a composite piezoelectric bimorph under both applied voltage and external force was inferred by thermodynamics. Secondly, the dvnamic model of the actuator was established analyzing the relationship between the locomotive states, viz. displacement and velocity, and design parameters, such as piezoelectric strain constant, elastic modulus,length, width and thickness of the piezoelectric element, actuator mass, and driving vohage. At last, the dynamic equation was solved and the theoretical calculation of the inherent frequency was more consistent with the experimental data, which proved the rationality of the model. All these lay a theoretical foundation of the micro actuator parameter optimization and more research on a micro robot.展开更多
Whilst methods exist to indirectly measure the effects of increased flow or gastro-oesophageal refluxing, they cannot quantitatively measure the amount of acid travelling back up into the oesophagus during reflux, nor...Whilst methods exist to indirectly measure the effects of increased flow or gastro-oesophageal refluxing, they cannot quantitatively measure the amount of acid travelling back up into the oesophagus during reflux, nor can they indicate the flow rate through the oesophagogastric junction (OGJ). Since OGJ dysfunction affects flow it seems most appropriate to describe the geometry of the OGJ and its effect on the flow. A device known as the functional lumen imaging probe (FLIP) has been shown to reliably measure the geometry of and pressure changes in the OGJ. FLIP cannot directly measure flow but the data gathered from the probe can be used to model flow through the junction by using computational flow dynamics (CFD). CFD uses a set of equations known as the Navier-Stokes equations to predict flow patterns and is a technique widely used in engineering. These equations are complex and require appropriate assumptions to provide simplifications before useful data can be obtained. With the assumption that the cross-sectional areas obtained via FLIP are circular, the radii of these circles can be obtained. A cubic interpolation scheme can then be applied to give a high-resolution geometry for the OGJ. In the case of modelling a reflux scenario, it can be seen that at the narrowest section a jet of fluid squirts into the oesophagus at a higher velocity than the fluid surrounding it. This jet has a maximum velocity of almost 2 ms-1 that occurs where the OGJ is at its narrowest. This simple prediction of acid ‘squirting’ into the oesophagusillustrates how the use of numerical methods can be used to develop a better understanding of the OGJ. This initial work using CFD shows some considerable promise for the future.展开更多
The leaching kinetics of Sb and Fe from antimony-bearing complex sulfides ore was investigated in HCl solution by oxidation?leaching with ozone.The effects of temperature,HCl concentration,stirring speed and particle ...The leaching kinetics of Sb and Fe from antimony-bearing complex sulfides ore was investigated in HCl solution by oxidation?leaching with ozone.The effects of temperature,HCl concentration,stirring speed and particle size on the process were explored.It is found that the recoveries of Sb and Fe reach86.1%and28.8%,respectively,when the reaction conditions are4.0mol/L HCl,900r/min stirring speed at85°C with<0.074mm particle size after50min leaching.XRD analysis indicates that no new solid product forms in the leaching residue and the leaching process can be described by shrinking core model.The leaching of Sb corresponds to diffusion-controlled model at low temperature(15?45°C)and mixed-controlled model at high temperature(45?85°C),and the apparent activation energies are6.91and17.93kJ/mol,respectively.The leaching of Fe corresponds to diffusion-controlled model,and the apparent activation energy is1.99kJ/mol.Three semi-empirical rate equations are obtained to describe the leaching process.展开更多
Nickel is a heavy metal which has the potential threaten to human's health and attracts public concern recently. The carbonized leaf powder is expected as suitable adsorbent for Ni(II) removal became of the composi...Nickel is a heavy metal which has the potential threaten to human's health and attracts public concern recently. The carbonized leaf powder is expected as suitable adsorbent for Ni(II) removal became of the composition of some beneficial groups. In this work, carbonized leaf powder was evaluated for its adsorption performance towards Ni(II). According to the results, adsorbent component, dosage, initial solute concentration, solution pH, temperature and contact time can significantly affect the efficiency of Ni(II) removal. Sips model fits the test results best, and the adsorption capacity towards Ni(II) is determined around 37.62 mg/g. The thermodynamic behaviors reveal the endothermic and spontaneous nature of the adsorption. The free adsorption energy (fluctuate around 8 kJ/mol) predicted by D-R model indicates that the adsorption capacity originated from both physical and chemical adsorption. Room temperature (15-25 ℃) is suitable for Ni(II) removal as well as low energy consumption for temperature enhancement. Further conclusions about the mechanism of chemical adsorption are obtained through analysis of the FT-IR test and XRD spectra, which indicates that the adsorption process occurs predominantly between amine, carbonate, phosphate and nickel ions.展开更多
Using the lumping method, CH_4, C_3H_8, C_10H_22, and C_22H_44 were chosen as themodel products, and CO as the key component. The mathematical model of a gas-solidfluidized bed reactor was established based on some hy...Using the lumping method, CH_4, C_3H_8, C_10H_22, and C_22H_44 were chosen as themodel products, and CO as the key component. The mathematical model of a gas-solidfluidized bed reactor was established based on some hypotheses. The consumption kinetic model of CO was investigated, and the parameters were estimated by UniversalGlobal Optimization with the Marquardt method. Residual error distribution and a statisticaltest show that the intrinsic kinetic models are reliable and acceptable. A model of carbonchain growth probability was established in terms of experiments. Coupled with the Ander-son- Schulz-Flory (ASF) distribution, the amount of specific product could be obtained.Large- scale cold model experiments were conducted to investigate the distribution of thegas (solid) phase and determine the function of the voidage with the location of the catalytic bed. The change tendencies of the components in the catalytic bed at different temperatures were computed and figured out. The calculated value computed by the modelestablished for the Fe-based F-T synthesis catalyst fit the experimental value very wellunder the same operating conditions, and all the absolute values of the relative deviationsare less than 5%.展开更多
In this work, a thermodynamic model is developed for prediction of structure H hydrate formation. The model combines the Peng-Robinson equation of state for the vapor, liquid and aqueous phases with the extended Ng-Ro...In this work, a thermodynamic model is developed for prediction of structure H hydrate formation. The model combines the Peng-Robinson equation of state for the vapor, liquid and aqueous phases with the extended Ng-Robinson hydrate model for gas hydrate formation of all three structures. The parameters of 14 structure- H hydrate formers are determined based on the experimental data of structure-H hydrates in the literature. The expression of fugacity of water in the empty hydrate phase is correlated for calculating structure-H hydrate formation conditions in the absence of free water. The model is tested by predicting hydrate formation conditions of a number of structure-H hydrate forming systems which are in good agreement with the experimental data. The proposed model is also applied to the prediction of hydrate formation conditions for various reservoir fluids such as natural gas and gas condensate.展开更多
The adsorption of Ca( II ) ions from aqueous solution by ehitosan a-ketoglutaric acid (KCTS) and hydroxamated chitosan a-ketoglutaric acid (HKCTS) was studied in a batch adsorption system. The Langmuir and Freun...The adsorption of Ca( II ) ions from aqueous solution by ehitosan a-ketoglutaric acid (KCTS) and hydroxamated chitosan a-ketoglutaric acid (HKCTS) was studied in a batch adsorption system. The Langmuir and Freundlich adsorption models were applied to describing the equilibrium isotherms, and isotherm constants were determined. The kinetics of the adsorption with respect to the initial Ca(II) ions concentration, temperature and pH was investigated. The pseudo-first-order and second-order kinetic models were used to describe the kinetic data and the rate constants were evaluated. The results show that the experimental data fit well to the Langmuir isotherms with a high correlation coefficient (R2). The pseudo-second-order rate expression provides the best fitting kinetic model. The pseudo second-order kinetic model is indicated with the activation energy of 26.22 kJ/mol and 6.16 kJ/mol for KCTS and HKCTS, respectively. It is suggested that the overall rate of adsorption of Ca( II ) ions is likely to be controlled by the chemical process.展开更多
文摘采用非模型拟合法研究了Mg_(17)Al_(12)储氢合金燃烧合成过程动力学,为今后规模化制备该合金提供理论指导。首先比较不同样品燃烧合成过程热效应及产物相组分,指出压片预处理方法及小尺寸Al粉均有利于促进合金化反应;然后分别采用Kissinger法和Flynn-Wall-Ozawa法计算出该反应活化能分别为140.5和142 k J/mol,对应的最概然机制函数为G(α)=[-ln(1-α)]1/3,符合Avrami-Erofeev方程的随机成核和随后生长机制。最后通过反应前后期产物相组成分析,揭示该燃烧合成过程中Mg-Al合金化反应机制。
基金financially supported by State Grid Corporation of China (No.5500-202128250A-0-0-00)。
文摘The effects of homogenization parameters on the microstructure evolution and tensile behavior of a balanced Al−Mg−Si alloy were investigated using the optical microscope,scanning electron microscope,X-ray diffraction,electron probe microanalyzer,differential scanning calorimetry,electrical conductivity test,and tensile test.The results show that Mg_(2)Si andβ-AlFeSi are the main intermetallic compounds in the as-cast structure,and Mg solute microsegregation is predominant inside the dendrite cell.The prediction of the full dissolution time of Mg_(2)Si by a kinetic model is consistent with the experiment.Theβ-AlFeSi in the alloy exhibits high thermal stability and mainly undergoes dissolution and coarsening during homogenization at 560℃,and only a small portion is converted toα-AlFeSi.The optimal homogenization parameters are determined as 560℃and 360 min,when considering the evolution of microstructure and resource savings.Both the strength and ductility of the alloy increased after homogenization.
基金Project(51105139)supported by the National Natural Science Foundation of ChinaProject(14JJ5015)supported by the Hunan Provincial Natural Science Foundation of ChinaProject(HPCM-2013-03)supported by the Open Research Fund of Key Laboratory of High Performance Complex Manufacturing,Central South University,China
文摘To analyze the effects of strain rate and temperature on the flow stress of 2519A aluminum alloy, the dynamic mechanical properties of 2519A aluminum alloy were measured by dynamic impact tests and quasi-static tensile tests. The effects of strain rate and temperature on the microstructure evolution were investigated by optical microscopy (OM) and transmission electron microscopy (TEM). The experimental results indicate that 2519A aluminum alloy exhibits strain-rate dependence and temperature susceptibility under dynamic impact. The constitutive constants for Johnson--Cook material model were determined by the quasi-static tests and Hopkinson bar experiments using the methods of variable separation and nonlinear fitting. The constitutive equation seems to be consistent with the experimental results, which provides reference for mechanical characteristics and numerical simulation of ballistic performance.
基金Project(50975053) supported by the National Natural Science Foundation of China
文摘The microstructure evolution of Al-Zn-Mg-Cu alloy was studied by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) during different rate cooling processes. Based on the DSC results, the kinetics analysis was carried out. The results indicate that the precipitation of η phase is the predominant transformation for the alloy during the cooling process after the solution treatment. And the η phase nucleates on dispersoids and at grain boundaries. The amount of η phase decreases with increasing cooling rate, and reduces by 75% as the cooling rate increases from 5 to 50 ℃/min. The kinetics of the precipitation of η phase can be described by the Kamamoto transformation model when the cooling rate is a constant.
基金The National Natural Science Foundation of China(No.11171065,81130068)the Natural Science Foundation of Jiangsu Province(No.BK2011058)the Fundamental Research Funds for the Central Universities(No.JKPZ2013015)
文摘The nonlinear mixed-effects model with stochastic differential equations (SDEs) is used to model the population pharmacokinetic (PPK) data that are extended from ordinary differential equations (ODEs) by adding a stochastic term to the state equation. Compared with the ODEs, the SDEs can model correlated residuals which are ubiquitous in actual pharmacokinetic problems. The Bayesian estimation is provided for nonlinear mixed-effects models based on stochastic differential equations. Combining the Gibbs and the Metropolis-Hastings algorithms, the population and individual parameter values are given through the parameter posterior predictive distributions. The analysis and simulation results show that the performance of the Bayesian estimation for mixed-effects SDEs model and analysis of population pharmacokinetic data is reliable. The results suggest that the proposed method is feasible for population pharmacokinetic data.
基金Project(cstc2016jcyjA0335)supported by Chongqing Foundation and Frontier Research,ChinaProject(P2017-020)supported by Open Fund Project of State Key Laboratory of Materials Processing and Die&Mould Technology,China
文摘To improve the understanding of coupling effect between dynamic recrystallization(DRX)behaviors and flow behaviors of as-cast AlCu4 SiMg, a finite element(FE) simulation equipped with the models of DRX evolution was implemented. A series of isothermal compression tests were performed primarily on a Gleeble-3500 thermo-mechanical simulator in a temperature range of 648-748 K and a strain rate range of 0.01-10 s-1.According to the measured true stress-strain data,the strain hardening rate curves(dσ/dε versus σ) were plotted to identify the critical strains for DRX initiation(εc). By further derivation of the related material constants, the DRX volume fraction equation and the strain for 50% DRX(ε0.5) equation were solved. Accordingly, the aforementioned DRX equations were implanted into the FE model to conduct a series of simulations for the isothermal compression tests. The results show that during the evolution of DRX volume fraction at a fixed strain rate, the strain required for the same amount of DRX volume fraction increases with decreasing temperature. In contrast, at a fixed temperature, it increases with increasing strain rate. Ultimately, the DRX kinetics model of AlCu4 SiMg alloy and the consequence of the FE analysis were validated by microstructure observations.
基金Supported by the Fundamental Research Funds for the Central Universities (2010ZY42)the Open Foundation of National Laboratory of Mineral Materials of China University of Geosciences (08A003)
文摘The feasibility and adsorption effect of lignite activated carbon for phenol removal from aqueous solutions were evaluated and investigated. A series of tests were performed to look into the influence of various experimental parameters such as contact time, initial phenol concentration, temperature, and pH value on the adsorption of phenol by lignite activated carbon. The experimental data were fitted well with the pseudo-second-order kinetic model. The adsorption is an endothermic process and conforms to Freundlich thermodynamic model. The results indicate that the lignite activated carbon is suitable to be used as an adsorbent material for adsorption of phenol from aqueous solutions.
基金Supported by the Natural Science Foundation of Guangdong Province,China(8151064101000049)
文摘This study is focused on the kinetic characteristics of photocatalytic degradation of gaseous organic compounds on modified titanium dioxide/activated carbon composite photocatalyst(MTA).The MTA,which co-doping with iron(Fe) and nitrogen(N),was synthesized by a sol-gel method,and its photocatalytic performance was investigated under different reaction conditions.The experimental data obtained were tested by the zero,first and second order kinetic model,and the factors affecting the kinetic model were analyzed.It was clearly demonstrated that the experimental data of toluene and acetone on MTA fit quite well with second order kinetic model equation,but the experimental data of formaldehyde fits well with zero order kinetic model equation.
文摘In order to increase the efficiency and reliability of the dynamic analysis for flexible planar linkage containing the coupling of multi-energy domains, a method based on bond graph is introduced. From the viewpoint of power conservation, the peculiar property of bond graph multiport element MTF is discussed. The procedure of modeling planar flexible muhibody mechanical systems by bond graphs and its dynamic principle are deseribed. To overcome the algebraic difficulty brought by differential causality anti nonlinear junction structure, the constraint forces at joints can be considered as unknown effort sources and added to the corresponding O-junctions of system bond graph model. As a result, the automatic modeling on a computer is realized. The validity of the procedure is illustrated by a practical example.
文摘Thermal analysis is one of the most used techniques for analyzing the behavior of aluminum alloys in order to analyze the precipitation of Guinier-Preston(GP)zones and different phases formed.In the present work,the behavior of the Al-5.46wt.%Zn-1.67wt.%Mg alloy was studied.The mechanism and kinetics of precipitation of the GP,the metastable phaseη′and the equilibrium phaseηwere investigated using DSC carried out between room temperature and 480℃at heating rates of 5,10,15 and 20℃/min.The apparent activation energies,calculated by DSC from isothermal calculation method using JMAK model,for GP,η′andηwere 56,79 and 96 kJ/mol,respectively,and those calculated by non-isothermal calculation method using Kissinger methods were 57,82 and 99 kJ/mol,respectively.The values of Avrami parameter,n,from isothermal calculation,during the precipitation of the GP,η′andηwere 1.103,1.9075 and 1.92,respectively,and those calculated by non-isothermal were 0.86,2.30 and 2.24,respectively.The results show that GP zones formation is governed by the migration of Zn and Mg atoms while the precipitation of theη′metastable phase and theηstable phase is governed by both the migration and the diffusion of the solute atoms.
基金Projects(51905053,51805051)supported by the National Natural Science Foundation of ChinaProject(cstc2019jcyj-bshX0119)supported by the Chongqing Postdoctoral Science Foundation,China。
文摘The topography of gear meshing interfaces is one of the key factors affecting the dynamic characteristics of the gear transmission system.In order to obtain the contact characteristics of meshing gear pair with different surface micro-topographies,an interface feature model and a tribo-dynamics coupling model for the gear system are proposed in this paper.The effects of the gear tooth surface micro-topography on the oil film distribution,contact damping and friction are considered.The time-varying meshing stiffness and the static transmission error are included in the abovementioned models.An exemplary gear pair is analyzed using the proposed models to investigate the influence of the surface micro-topography on the dynamic characteristics of gear system under different micro-topographies and input torque conditions.Simulation results show that the effects of gear tooth micro-topography on the gear dynamic responses(including the friction and the vicious damping at the gear meshing interface and the vibration in the direction of offline of action)are highly dependent on the regularity of tooth surface.The vibration and noise can be significantly controlled by manufacturing a regular gear tooth profiles instead of random profiles.
基金Sponsored by the National Natural Science Foundation of China(Grant No.69774020)the National Doctoral Foundation of China(Grant No.98014106).
文摘A new kind of inertial piezoelectric actuator for a micro in-pipe robot is proposed and studied. The actuator is composed of a body, corresponding to a mass rod, and four elastic legs. Each leg is a composite piezoelectric bimorph beam, made up of a middle metal element, an upper and lower piezoelectric elements. The mechanism is driven by an asymmetric waveform voltage, such as saw-toothed waveform, and utilizes the dynamic relationship between the maximum static friction force and the inertial force. To study the actuator, firstly, the constituent equation of a composite piezoelectric bimorph under both applied voltage and external force was inferred by thermodynamics. Secondly, the dvnamic model of the actuator was established analyzing the relationship between the locomotive states, viz. displacement and velocity, and design parameters, such as piezoelectric strain constant, elastic modulus,length, width and thickness of the piezoelectric element, actuator mass, and driving vohage. At last, the dynamic equation was solved and the theoretical calculation of the inherent frequency was more consistent with the experimental data, which proved the rationality of the model. All these lay a theoretical foundation of the micro actuator parameter optimization and more research on a micro robot.
基金Supported by a Science Foundation Ireland through the ETS Walton Visiting Professor Programme a grant from the Higher Education Authority in Ireland
文摘Whilst methods exist to indirectly measure the effects of increased flow or gastro-oesophageal refluxing, they cannot quantitatively measure the amount of acid travelling back up into the oesophagus during reflux, nor can they indicate the flow rate through the oesophagogastric junction (OGJ). Since OGJ dysfunction affects flow it seems most appropriate to describe the geometry of the OGJ and its effect on the flow. A device known as the functional lumen imaging probe (FLIP) has been shown to reliably measure the geometry of and pressure changes in the OGJ. FLIP cannot directly measure flow but the data gathered from the probe can be used to model flow through the junction by using computational flow dynamics (CFD). CFD uses a set of equations known as the Navier-Stokes equations to predict flow patterns and is a technique widely used in engineering. These equations are complex and require appropriate assumptions to provide simplifications before useful data can be obtained. With the assumption that the cross-sectional areas obtained via FLIP are circular, the radii of these circles can be obtained. A cubic interpolation scheme can then be applied to give a high-resolution geometry for the OGJ. In the case of modelling a reflux scenario, it can be seen that at the narrowest section a jet of fluid squirts into the oesophagus at a higher velocity than the fluid surrounding it. This jet has a maximum velocity of almost 2 ms-1 that occurs where the OGJ is at its narrowest. This simple prediction of acid ‘squirting’ into the oesophagusillustrates how the use of numerical methods can be used to develop a better understanding of the OGJ. This initial work using CFD shows some considerable promise for the future.
基金Project (51474257) supported by the National Natural Science Foundation of ChinaProject (2015zzts037) supported by the Postgraduate Research and Innovation Projects of Hunan Province,ChinaProject (2015JC3005) supported by the Key Technology Research and Development Program of Hunan Province,China
文摘The leaching kinetics of Sb and Fe from antimony-bearing complex sulfides ore was investigated in HCl solution by oxidation?leaching with ozone.The effects of temperature,HCl concentration,stirring speed and particle size on the process were explored.It is found that the recoveries of Sb and Fe reach86.1%and28.8%,respectively,when the reaction conditions are4.0mol/L HCl,900r/min stirring speed at85°C with<0.074mm particle size after50min leaching.XRD analysis indicates that no new solid product forms in the leaching residue and the leaching process can be described by shrinking core model.The leaching of Sb corresponds to diffusion-controlled model at low temperature(15?45°C)and mixed-controlled model at high temperature(45?85°C),and the apparent activation energies are6.91and17.93kJ/mol,respectively.The leaching of Fe corresponds to diffusion-controlled model,and the apparent activation energy is1.99kJ/mol.Three semi-empirical rate equations are obtained to describe the leaching process.
基金Projects(5117916851308310)supported by the National Natural Science Foundation of China+1 种基金Project(LQ13E080007)supported by Zhejiang Provincial Natural Science Foundation,ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Jiangsu Province,China
文摘Nickel is a heavy metal which has the potential threaten to human's health and attracts public concern recently. The carbonized leaf powder is expected as suitable adsorbent for Ni(II) removal became of the composition of some beneficial groups. In this work, carbonized leaf powder was evaluated for its adsorption performance towards Ni(II). According to the results, adsorbent component, dosage, initial solute concentration, solution pH, temperature and contact time can significantly affect the efficiency of Ni(II) removal. Sips model fits the test results best, and the adsorption capacity towards Ni(II) is determined around 37.62 mg/g. The thermodynamic behaviors reveal the endothermic and spontaneous nature of the adsorption. The free adsorption energy (fluctuate around 8 kJ/mol) predicted by D-R model indicates that the adsorption capacity originated from both physical and chemical adsorption. Room temperature (15-25 ℃) is suitable for Ni(II) removal as well as low energy consumption for temperature enhancement. Further conclusions about the mechanism of chemical adsorption are obtained through analysis of the FT-IR test and XRD spectra, which indicates that the adsorption process occurs predominantly between amine, carbonate, phosphate and nickel ions.
基金Supported by the Doctoral Foundation of China (20050251006)
文摘Using the lumping method, CH_4, C_3H_8, C_10H_22, and C_22H_44 were chosen as themodel products, and CO as the key component. The mathematical model of a gas-solidfluidized bed reactor was established based on some hypotheses. The consumption kinetic model of CO was investigated, and the parameters were estimated by UniversalGlobal Optimization with the Marquardt method. Residual error distribution and a statisticaltest show that the intrinsic kinetic models are reliable and acceptable. A model of carbonchain growth probability was established in terms of experiments. Coupled with the Ander-son- Schulz-Flory (ASF) distribution, the amount of specific product could be obtained.Large- scale cold model experiments were conducted to investigate the distribution of thegas (solid) phase and determine the function of the voidage with the location of the catalytic bed. The change tendencies of the components in the catalytic bed at different temperatures were computed and figured out. The calculated value computed by the modelestablished for the Fe-based F-T synthesis catalyst fit the experimental value very wellunder the same operating conditions, and all the absolute values of the relative deviationsare less than 5%.
基金Supported by the National Natural Science Foundation of China (No. 20490207, No. 20176028, No. 90210020) and Huo Ying-dong Education Foundation (No. 81064)
文摘In this work, a thermodynamic model is developed for prediction of structure H hydrate formation. The model combines the Peng-Robinson equation of state for the vapor, liquid and aqueous phases with the extended Ng-Robinson hydrate model for gas hydrate formation of all three structures. The parameters of 14 structure- H hydrate formers are determined based on the experimental data of structure-H hydrates in the literature. The expression of fugacity of water in the empty hydrate phase is correlated for calculating structure-H hydrate formation conditions in the absence of free water. The model is tested by predicting hydrate formation conditions of a number of structure-H hydrate forming systems which are in good agreement with the experimental data. The proposed model is also applied to the prediction of hydrate formation conditions for various reservoir fluids such as natural gas and gas condensate.
基金Project(20376085) supported by the National Natural Science Foundation of China
文摘The adsorption of Ca( II ) ions from aqueous solution by ehitosan a-ketoglutaric acid (KCTS) and hydroxamated chitosan a-ketoglutaric acid (HKCTS) was studied in a batch adsorption system. The Langmuir and Freundlich adsorption models were applied to describing the equilibrium isotherms, and isotherm constants were determined. The kinetics of the adsorption with respect to the initial Ca(II) ions concentration, temperature and pH was investigated. The pseudo-first-order and second-order kinetic models were used to describe the kinetic data and the rate constants were evaluated. The results show that the experimental data fit well to the Langmuir isotherms with a high correlation coefficient (R2). The pseudo-second-order rate expression provides the best fitting kinetic model. The pseudo second-order kinetic model is indicated with the activation energy of 26.22 kJ/mol and 6.16 kJ/mol for KCTS and HKCTS, respectively. It is suggested that the overall rate of adsorption of Ca( II ) ions is likely to be controlled by the chemical process.