Different solvothermal reactions of ZnC2O_(4)with oxalic acid(H_(2)ox)and 1,2,4-triazole(Htrz)successfully gave a new quaternary(NJTU-Bai83,NJTU-Bai=Nanjing Tech University Bai's group)and a new quinary(NJTU-Bai84...Different solvothermal reactions of ZnC2O_(4)with oxalic acid(H_(2)ox)and 1,2,4-triazole(Htrz)successfully gave a new quaternary(NJTU-Bai83,NJTU-Bai=Nanjing Tech University Bai's group)and a new quinary(NJTU-Bai84)anionic metal-organic frameworks(MOFs),where NJTU-Bai83=(Me_(2)NH_(2))2[Zn_(3)(trz)_(2)(ox)_(3)]·2H_(2)O and NJTU-Bai84=(Me_(2)NH_(2))[Zn_(3)(trz)_(3)(ox)_(2)]·H_(2)O,respectively.With the[Zn_(2)(ox)4(trz)_(2)]secondary building unit(SBU)in NJTU-Bai83 replaced by the[Zn_(3)(ox)_(2)(trz)_(6)]and planar[Zn(ox)_(2)(trz)_(2)]ones in NJTU-Bai84,2D supramolecular building layers(SBLs)are changed from the A-layer and B-layer to another A-layer,while pillars are transformed from the tetrahedral[Zn(ox)_(2)(trz)_(2)]SBU to the irregular tetrahedral[Zn(ox)_(2)(trz)_(2)]and planar[Zn(ox)_(2)(trz)_(2)]SBUs.Thus,cdq-topological quaternary NJTU-Bai83 is tuned to(4,4,8)-c new topological quinary NJTU-Bai84.Two MOFs were well characterized by powder X-ray diffraction,thermogravimetric analysis,elemental analysis,etc.CCDC:2351819,NJTU-Bai83;2351820,NJTU-Bai84.展开更多
The granule medium of discreteness is supposed to be continuous(Drucker-Prager model) in the existing finite element simulation analysis on the hot granule medium pressure forming(HGMF) process, so the granule med...The granule medium of discreteness is supposed to be continuous(Drucker-Prager model) in the existing finite element simulation analysis on the hot granule medium pressure forming(HGMF) process, so the granule medium may produce tensile stress in the process of pressure-transferring and flowing, which does not coincide with the reality. The analysis method, discrete element and finite element(DE-FE) coupling simulation, is proposed to solve the problem. The material parameters of simulation model are obtained by the pressure-transfer performance test of granule medium and the hot uniaxial tensile test of sheet metal. The DE-FE coupling simulation platform is established by adopting Visual Basic language. The features in the process that AA7075-T6 conical parts are formed by the HGMF process are analyzed and verified by the process test. The studies show that the results of DE-FE coupling simulation coincide well with the test results, which provides a new analysis method to solve the mechanics problem in the coupling of discrete and continuum.展开更多
文摘Different solvothermal reactions of ZnC2O_(4)with oxalic acid(H_(2)ox)and 1,2,4-triazole(Htrz)successfully gave a new quaternary(NJTU-Bai83,NJTU-Bai=Nanjing Tech University Bai's group)and a new quinary(NJTU-Bai84)anionic metal-organic frameworks(MOFs),where NJTU-Bai83=(Me_(2)NH_(2))2[Zn_(3)(trz)_(2)(ox)_(3)]·2H_(2)O and NJTU-Bai84=(Me_(2)NH_(2))[Zn_(3)(trz)_(3)(ox)_(2)]·H_(2)O,respectively.With the[Zn_(2)(ox)4(trz)_(2)]secondary building unit(SBU)in NJTU-Bai83 replaced by the[Zn_(3)(ox)_(2)(trz)_(6)]and planar[Zn(ox)_(2)(trz)_(2)]ones in NJTU-Bai84,2D supramolecular building layers(SBLs)are changed from the A-layer and B-layer to another A-layer,while pillars are transformed from the tetrahedral[Zn(ox)_(2)(trz)_(2)]SBU to the irregular tetrahedral[Zn(ox)_(2)(trz)_(2)]and planar[Zn(ox)_(2)(trz)_(2)]SBUs.Thus,cdq-topological quaternary NJTU-Bai83 is tuned to(4,4,8)-c new topological quinary NJTU-Bai84.Two MOFs were well characterized by powder X-ray diffraction,thermogravimetric analysis,elemental analysis,etc.CCDC:2351819,NJTU-Bai83;2351820,NJTU-Bai84.
基金Projects(5130538651305385)supported by the National Natural Science Foundation of China+1 种基金Project(E2013203093)supported by the Natural Science Foundation of Hebei ProvinceChina
文摘The granule medium of discreteness is supposed to be continuous(Drucker-Prager model) in the existing finite element simulation analysis on the hot granule medium pressure forming(HGMF) process, so the granule medium may produce tensile stress in the process of pressure-transferring and flowing, which does not coincide with the reality. The analysis method, discrete element and finite element(DE-FE) coupling simulation, is proposed to solve the problem. The material parameters of simulation model are obtained by the pressure-transfer performance test of granule medium and the hot uniaxial tensile test of sheet metal. The DE-FE coupling simulation platform is established by adopting Visual Basic language. The features in the process that AA7075-T6 conical parts are formed by the HGMF process are analyzed and verified by the process test. The studies show that the results of DE-FE coupling simulation coincide well with the test results, which provides a new analysis method to solve the mechanics problem in the coupling of discrete and continuum.