Based on back analysis of lateral displacements measured in situ by using the analytical solution, a useful method for estimating stress concentration ratio of geosynthetic-reinforced and pile-supported(GRPS) embankme...Based on back analysis of lateral displacements measured in situ by using the analytical solution, a useful method for estimating stress concentration ratio of geosynthetic-reinforced and pile-supported(GRPS) embankments was proposed. In order to validate the proposed method, a full-scale high-speed railway embankment(HSRE) with four instrumented subsections over medium compressibility silty clay was constructed in three stages. The soil profile, construction procedure and monitoring of settlements and lateral displacements of the four test sections were described. The field deformation analysis results show that 1) the combined reinforcement of CFG piles and geosynthetic layer perform well in terms of reducing lateral displacements; 2) the development of lateral displacements lags behind the increase of fill load, which can be attributed to the vertical load transfer mechanism of the pile foundation; and 3) pile length has a dominant effect on the stress distribution proportion between piles and surrounding soils. The comparison between predicted and experimental results suggests that the proposed analytical solution and the back analysis-based method are capable of reasonably estimating the lateral deformation and the stress concentration ratio, respectively, if the appropriate soil elastic modulus is chosen.展开更多
XPS and AES depth composition profile studies were carried on to understand chemical components of (100) surfaces for Chengde hypersthene from Hebei Province, China, and Bamble enstatite from Norway. Also, to understa...XPS and AES depth composition profile studies were carried on to understand chemical components of (100) surfaces for Chengde hypersthene from Hebei Province, China, and Bamble enstatite from Norway. Also, to understand the microtopography of them the AFM observation was carried on. There are obvious differences between chemical components of (100) surface and those of mineral inner. Compared with inner mineral Si4+ proportion in total cations has no distinguished variation, whereas Ca2+ and Al3+ proportions increase respectively, and Mg2+ proportion decreases. AES depth composition profile of 2000s shows that at a depth of 70 nm the atomic concentrations (%) for each element (except Si in Chengde hypersthene) slightly go up and down, but the average values have no obvious change. On the profile, the atomic concentrations (%) of Al and Si for Chengde hypersthene present a compensated relationship. Obviously, the Si and Al must have the relationship of isomorphic replacement on the (100) surface. The image of AFM shows that there is hillock growth on the (100) surface in the layered form of the polygon with 0 to several hundreds nm in thickness. The growth is a sort of secondary phyllosilicate minerals. The observation of the above-mentioned phenomenon and the recognition on the above regularities are benefit for understanding of the mechanism for weathering and water-rock reactions.展开更多
基金Project(2010G003-F)supported by Technological Research and Development Programs of the Ministry of Railways,China
文摘Based on back analysis of lateral displacements measured in situ by using the analytical solution, a useful method for estimating stress concentration ratio of geosynthetic-reinforced and pile-supported(GRPS) embankments was proposed. In order to validate the proposed method, a full-scale high-speed railway embankment(HSRE) with four instrumented subsections over medium compressibility silty clay was constructed in three stages. The soil profile, construction procedure and monitoring of settlements and lateral displacements of the four test sections were described. The field deformation analysis results show that 1) the combined reinforcement of CFG piles and geosynthetic layer perform well in terms of reducing lateral displacements; 2) the development of lateral displacements lags behind the increase of fill load, which can be attributed to the vertical load transfer mechanism of the pile foundation; and 3) pile length has a dominant effect on the stress distribution proportion between piles and surrounding soils. The comparison between predicted and experimental results suggests that the proposed analytical solution and the back analysis-based method are capable of reasonably estimating the lateral deformation and the stress concentration ratio, respectively, if the appropriate soil elastic modulus is chosen.
基金This work was supported by the National Natural Science Foundation of China(Grant No.40172016).
文摘XPS and AES depth composition profile studies were carried on to understand chemical components of (100) surfaces for Chengde hypersthene from Hebei Province, China, and Bamble enstatite from Norway. Also, to understand the microtopography of them the AFM observation was carried on. There are obvious differences between chemical components of (100) surface and those of mineral inner. Compared with inner mineral Si4+ proportion in total cations has no distinguished variation, whereas Ca2+ and Al3+ proportions increase respectively, and Mg2+ proportion decreases. AES depth composition profile of 2000s shows that at a depth of 70 nm the atomic concentrations (%) for each element (except Si in Chengde hypersthene) slightly go up and down, but the average values have no obvious change. On the profile, the atomic concentrations (%) of Al and Si for Chengde hypersthene present a compensated relationship. Obviously, the Si and Al must have the relationship of isomorphic replacement on the (100) surface. The image of AFM shows that there is hillock growth on the (100) surface in the layered form of the polygon with 0 to several hundreds nm in thickness. The growth is a sort of secondary phyllosilicate minerals. The observation of the above-mentioned phenomenon and the recognition on the above regularities are benefit for understanding of the mechanism for weathering and water-rock reactions.