The direct synthesis of hydrogen peroxide(H_(2)O_(2))via a two‐electron oxygen reduction reaction(2e‐ORR)in acidic media has emerged as a green process for the production of this valuable chemical.However,such an ap...The direct synthesis of hydrogen peroxide(H_(2)O_(2))via a two‐electron oxygen reduction reaction(2e‐ORR)in acidic media has emerged as a green process for the production of this valuable chemical.However,such an approach employs expensive noble‐metal‐based electrocatalysts,which severely undermines its feasibility when implemented on an industrial scale.Herein,based on density functional theory computations and microkinetic modeling,we demonstrate that a novel two‐dimensional(2D)material,namely a 1T′‐MoTe_(2)monolayer,can serve as an efficient non‐precious electrocatalyst to facilitate the 2e‐ORR.The 1T′‐MoTe_(2)monolayer is a stable 2D crystal that can be easily produced through exfoliation techniques.The surface‐exposed Te sites of the 1T′‐MoTe_(2)monolayer exhibit a favorable OOH*binding energy of 4.24 eV,resulting in a rather high basal plane activity toward the 2e‐ORR.Importantly,kinetic computations indicate that the 1T'‐MoTe_(2)monolayer preferentially promotes the formation of H_(2)O_(2)over the competing four‐electron ORR step.These desirable characteristics render 1T′‐MoTe_(2)a promising candidate for catalyzing the electrochemical reduction of O_(2)to H_(2)O_(2).展开更多
文摘The direct synthesis of hydrogen peroxide(H_(2)O_(2))via a two‐electron oxygen reduction reaction(2e‐ORR)in acidic media has emerged as a green process for the production of this valuable chemical.However,such an approach employs expensive noble‐metal‐based electrocatalysts,which severely undermines its feasibility when implemented on an industrial scale.Herein,based on density functional theory computations and microkinetic modeling,we demonstrate that a novel two‐dimensional(2D)material,namely a 1T′‐MoTe_(2)monolayer,can serve as an efficient non‐precious electrocatalyst to facilitate the 2e‐ORR.The 1T′‐MoTe_(2)monolayer is a stable 2D crystal that can be easily produced through exfoliation techniques.The surface‐exposed Te sites of the 1T′‐MoTe_(2)monolayer exhibit a favorable OOH*binding energy of 4.24 eV,resulting in a rather high basal plane activity toward the 2e‐ORR.Importantly,kinetic computations indicate that the 1T'‐MoTe_(2)monolayer preferentially promotes the formation of H_(2)O_(2)over the competing four‐electron ORR step.These desirable characteristics render 1T′‐MoTe_(2)a promising candidate for catalyzing the electrochemical reduction of O_(2)to H_(2)O_(2).