基因组的结构变异是生物体表型进化的重要驱动力之一。设计与合成酵母基因组为人工基因组结构变异提供了新途径。人工合成酿酒酵母基因组(Sc2.0)通过系统性地引入重排元件,赋予了基因组柔性可变的功能,可诱导产生 DNA 片段的删除、反转...基因组的结构变异是生物体表型进化的重要驱动力之一。设计与合成酵母基因组为人工基因组结构变异提供了新途径。人工合成酿酒酵母基因组(Sc2.0)通过系统性地引入重排元件,赋予了基因组柔性可变的功能,可诱导产生 DNA 片段的删除、反转、复制、移位等基因组结构变异。合成型酵母基因组重排技术可实现菌株性状的快速进化,并且为研究基因组结构变异与表型变化间的关系提供了一种快速、全新的方法。综述了合成型酵母基因组重排技术的研究热点和技术进展,并展示了其在创新菌种中的应用价值。展开更多
Microsatellites or SSRs as powerful genetic markers have widely been used in genetics and evolutionary biology in common wheat. Because of the high polymorphism, newly synthesized hexaploid wheat has been used in the ...Microsatellites or SSRs as powerful genetic markers have widely been used in genetics and evolutionary biology in common wheat. Because of the high polymorphism, newly synthesized hexaploid wheat has been used in the construction of genetic segregation population for SSR markers, However, data on the evolution of microsatellites during the polyploidization event of hexaploid wheat are limited. In this study, 66 pairs of specific to A/B genome SSR patterns among newly synthesized hexaploid wheat, the donor tetraploid wheat and Aegilops tauschii were compared. The results indicated that most SSR markers were conserved during the polyploidization events of newly synthetic hexaploid wheat, from Triticum turgidum and Ae. tauschii. Over 70% A/B genome specific SSR markers could amplify the SSR sequences from the D genome ofAe. tauschii. Most amplified fragments from Ae, tauschii were detected in synthetic hexaploid at corresponding positions with the same sizes and patterns as in its parental Ae. tauschii. This suggested that these SSR markers, specific for A/B genome in common wheat, could amplify SSR products of D genome besides A/B genome in the newly synthesized hexaploid wheat, that is, these SSR primers specific for A/B genome in common wheat were nonspecific for the A/B genome in the synthetic hexaploid wheat. In addition, one amplified Ae. tauschii product was not detected in the newly synthetic hexaploid wheat. An extra-amplified product was found in the newly synthetic hexaploid wheat. These results suggested that caution should be taken when using SSR marker to genotype newly synthetic hexaploid wheat.展开更多
This paper aims to provide better guidance for construction of trehalose-producing recombinant strains to further improve the yield of trehalose. The research progress on trehalose biosynthesis pathways and the applic...This paper aims to provide better guidance for construction of trehalose-producing recombinant strains to further improve the yield of trehalose. The research progress on trehalose biosynthesis pathways and the application of molecular biology technique in trehalose study in recent 30 years, especially the last 10 years are reviewed. Results show that there are 5 pathways of trehalose synthesis. Although enzymes and genes of trehalose synthesis have been isolated and genetic engineering strains have increased gradually, the improvement of trehalose yield is still inadequate because most recombinant strains are limited to study the physicochemical properties of single enzyme. With the development of modern biological technology, especially the rapid development of DNA recombinant technology, metagenomics and synthetic biology, high expression of heterologous trehalose in recombinant strains would become a hot research topic in the future.展开更多
Torque teno virus(TTV) is a nonenveloped virus containing a single-stranded,circular DNA genome of approximately 3.8kb.We completely synthesized the 3 808 nucleotides of the TTV(SANBAN isolate) genome,which contains a...Torque teno virus(TTV) is a nonenveloped virus containing a single-stranded,circular DNA genome of approximately 3.8kb.We completely synthesized the 3 808 nucleotides of the TTV(SANBAN isolate) genome,which contains a hairpin structure and a GC-rich region.More than 100 overlapping oligonucleotides were chemically synthesized and assembled by polymerase chain assembly reaction(PCA),and the synthesis was completed with splicing by overlap extension(SOEing).This study establishes the methodological basis of the chemical synthesis of a viral genome for use as a live attenuated vaccine or gene therapy vector.展开更多
Since the first terpenoid synthase cDNA was obtained by the reverse genetic approach from grand fir, great progress in the molecular genetics of terpenoid formation has been made with angiosperms and genes encoding a ...Since the first terpenoid synthase cDNA was obtained by the reverse genetic approach from grand fir, great progress in the molecular genetics of terpenoid formation has been made with angiosperms and genes encoding a monoterpene synthase, a sesquiterpene synthase, and a diterpene synthase. Tree killing bark beetles and their vectored fungal pathogens are the most destructive agents of conifer forests worldwide. Conifers defend against attack by the constitutive and inducible production of oleoresin that accumulates at the wound site to kill invaders and both flush and seal the injury. Although toxic to the bark beetle and fungal pathogen, oleoresin also plays a central role in the chemical ecology of these boring insects. Recent advances in the molecular genetics of terpenoid biosynthesis provide evidence for the evolutionary origins of oleoresin and permit consideration of genetic engineering strategies to improve conifer defenses as a component of modern forest biotechnology. This review described enzymes of resin biosynthesis, structural feathers of genes genomic intron and exon organization, pathway organization and evolution, resin production and accumulation, interactions between conifer and bark beetle, and engineering strategies to improve conifer defenses.展开更多
Endometrial cancer (EC) is the most common and lethal gynaecological cancer type in Europe and in North America. Frequently EC arises more in the corpus proper and manifests as round, polypoid expansile masses, but ...Endometrial cancer (EC) is the most common and lethal gynaecological cancer type in Europe and in North America. Frequently EC arises more in the corpus proper and manifests as round, polypoid expansile masses, but it may also originate in the lower uterine segment or spread in endometrium with necrosis and hemorrhage. The analysis was performed using a custom panel containing all DNA sequences loci coding pre-miRNAs and genes related to biogenesis and regulation of sncRNAs in normal and tumor tissues extracted from 6 unrelated patients with endometrial carcinoma. The identified variations were correlated with mature miRNAs differentially expressed in the same normal and tumor endometrial tissues. The comparison analysis confirmed the high degree of cellular and genetic intratumoral heterogeneity with a temporal and spatial miRNA expression distribution in association with genomic variants identified. The classification of specific DNA mutations, onto the loci identified, should be suitable to characterize possible instability genome regions and help classification of tumors to ameliorate the clinical management of patients affected by endometrial carcinoma.展开更多
文摘基因组的结构变异是生物体表型进化的重要驱动力之一。设计与合成酵母基因组为人工基因组结构变异提供了新途径。人工合成酿酒酵母基因组(Sc2.0)通过系统性地引入重排元件,赋予了基因组柔性可变的功能,可诱导产生 DNA 片段的删除、反转、复制、移位等基因组结构变异。合成型酵母基因组重排技术可实现菌株性状的快速进化,并且为研究基因组结构变异与表型变化间的关系提供了一种快速、全新的方法。综述了合成型酵母基因组重排技术的研究热点和技术进展,并展示了其在创新菌种中的应用价值。
基金the project of Scientific Research Foundation for the Returned Overseas Chinese Scholars, New Century Excellent Talents in University (No. NCET-04-0908)Changjiang Scholars and Innovative Research Team in University (No. IRT0 453) of the Chinese Ministry of EducationNational Natural Science Foundation of China (No. 30270804), Education Department and Science and Technology Department of Sichuan Province.
文摘Microsatellites or SSRs as powerful genetic markers have widely been used in genetics and evolutionary biology in common wheat. Because of the high polymorphism, newly synthesized hexaploid wheat has been used in the construction of genetic segregation population for SSR markers, However, data on the evolution of microsatellites during the polyploidization event of hexaploid wheat are limited. In this study, 66 pairs of specific to A/B genome SSR patterns among newly synthesized hexaploid wheat, the donor tetraploid wheat and Aegilops tauschii were compared. The results indicated that most SSR markers were conserved during the polyploidization events of newly synthetic hexaploid wheat, from Triticum turgidum and Ae. tauschii. Over 70% A/B genome specific SSR markers could amplify the SSR sequences from the D genome ofAe. tauschii. Most amplified fragments from Ae, tauschii were detected in synthetic hexaploid at corresponding positions with the same sizes and patterns as in its parental Ae. tauschii. This suggested that these SSR markers, specific for A/B genome in common wheat, could amplify SSR products of D genome besides A/B genome in the newly synthesized hexaploid wheat, that is, these SSR primers specific for A/B genome in common wheat were nonspecific for the A/B genome in the synthetic hexaploid wheat. In addition, one amplified Ae. tauschii product was not detected in the newly synthetic hexaploid wheat. An extra-amplified product was found in the newly synthetic hexaploid wheat. These results suggested that caution should be taken when using SSR marker to genotype newly synthetic hexaploid wheat.
文摘This paper aims to provide better guidance for construction of trehalose-producing recombinant strains to further improve the yield of trehalose. The research progress on trehalose biosynthesis pathways and the application of molecular biology technique in trehalose study in recent 30 years, especially the last 10 years are reviewed. Results show that there are 5 pathways of trehalose synthesis. Although enzymes and genes of trehalose synthesis have been isolated and genetic engineering strains have increased gradually, the improvement of trehalose yield is still inadequate because most recombinant strains are limited to study the physicochemical properties of single enzyme. With the development of modern biological technology, especially the rapid development of DNA recombinant technology, metagenomics and synthetic biology, high expression of heterologous trehalose in recombinant strains would become a hot research topic in the future.
基金The Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-EW-Z-3)
文摘Torque teno virus(TTV) is a nonenveloped virus containing a single-stranded,circular DNA genome of approximately 3.8kb.We completely synthesized the 3 808 nucleotides of the TTV(SANBAN isolate) genome,which contains a hairpin structure and a GC-rich region.More than 100 overlapping oligonucleotides were chemically synthesized and assembled by polymerase chain assembly reaction(PCA),and the synthesis was completed with splicing by overlap extension(SOEing).This study establishes the methodological basis of the chemical synthesis of a viral genome for use as a live attenuated vaccine or gene therapy vector.
文摘Since the first terpenoid synthase cDNA was obtained by the reverse genetic approach from grand fir, great progress in the molecular genetics of terpenoid formation has been made with angiosperms and genes encoding a monoterpene synthase, a sesquiterpene synthase, and a diterpene synthase. Tree killing bark beetles and their vectored fungal pathogens are the most destructive agents of conifer forests worldwide. Conifers defend against attack by the constitutive and inducible production of oleoresin that accumulates at the wound site to kill invaders and both flush and seal the injury. Although toxic to the bark beetle and fungal pathogen, oleoresin also plays a central role in the chemical ecology of these boring insects. Recent advances in the molecular genetics of terpenoid biosynthesis provide evidence for the evolutionary origins of oleoresin and permit consideration of genetic engineering strategies to improve conifer defenses as a component of modern forest biotechnology. This review described enzymes of resin biosynthesis, structural feathers of genes genomic intron and exon organization, pathway organization and evolution, resin production and accumulation, interactions between conifer and bark beetle, and engineering strategies to improve conifer defenses.
文摘Endometrial cancer (EC) is the most common and lethal gynaecological cancer type in Europe and in North America. Frequently EC arises more in the corpus proper and manifests as round, polypoid expansile masses, but it may also originate in the lower uterine segment or spread in endometrium with necrosis and hemorrhage. The analysis was performed using a custom panel containing all DNA sequences loci coding pre-miRNAs and genes related to biogenesis and regulation of sncRNAs in normal and tumor tissues extracted from 6 unrelated patients with endometrial carcinoma. The identified variations were correlated with mature miRNAs differentially expressed in the same normal and tumor endometrial tissues. The comparison analysis confirmed the high degree of cellular and genetic intratumoral heterogeneity with a temporal and spatial miRNA expression distribution in association with genomic variants identified. The classification of specific DNA mutations, onto the loci identified, should be suitable to characterize possible instability genome regions and help classification of tumors to ameliorate the clinical management of patients affected by endometrial carcinoma.