由于简单线性迭代聚类(simple linear iterative clustering,SLIC)算法对含有相干斑噪声的合成孔径雷达(synthetic aperture radar,SAR)图像边缘分割不理想,提出了一种基于变差系数(coefficient of variation,CV)的SAR图像超像素分割算...由于简单线性迭代聚类(simple linear iterative clustering,SLIC)算法对含有相干斑噪声的合成孔径雷达(synthetic aperture radar,SAR)图像边缘分割不理想,提出了一种基于变差系数(coefficient of variation,CV)的SAR图像超像素分割算法。该算法首先对SAR图像进行各项异性高斯平滑预处理,使得图像相干斑得到平滑的同时边缘信息不被破坏;其次,采用CV估计边缘信息,使得图像的同质区与边缘区更容易区分;最后用加入边缘信息的SLIC算法进行聚类,生成超像素。实验结果表明:该算法在SAR图像分割下与3种经典超像素算法相比,其召回率至少提高了5%,且超像素个数大于400时,欠分割错误率降低了2%。该算法使得SAR图像超像素分割的准确度提高,其边缘和图像真实边缘更加贴切。展开更多
针对简单线性迭代聚类(simple linear iterative cluste,SLIC)对含有乘性相干斑噪声的合成孔径雷达(synthetic aperture radar,SAR)图像边缘分割不理想的问题,在SLIC基础上提出了一种融合边缘信息的SAR图像超像素分割算法。首先,利用高...针对简单线性迭代聚类(simple linear iterative cluste,SLIC)对含有乘性相干斑噪声的合成孔径雷达(synthetic aperture radar,SAR)图像边缘分割不理想的问题,在SLIC基础上提出了一种融合边缘信息的SAR图像超像素分割算法。首先,利用高斯方向平滑对SAR图像进行预处理,从而在抑制乘性相干斑噪声的同时有效保护边缘细节;其次,提出了一种基于指数加权平均比率(ratio of exponential weighted average,ROEWA)算子的改进相似度测量参量,以提高SAR图像的分割精度;最后,采用六边形初始化聚类中心与圆形区域的搜索方式进行局部区域聚类,从而保证了算法复杂度增加的同时,算法的运行时间不会明显变化。实验结果表明:与4种经典超像素算法相比,本文算法生成的超像素边缘更加贴合SAR图像的真实边缘且得到的超像素大小较为均匀。展开更多
文摘由于简单线性迭代聚类(simple linear iterative clustering,SLIC)算法对含有相干斑噪声的合成孔径雷达(synthetic aperture radar,SAR)图像边缘分割不理想,提出了一种基于变差系数(coefficient of variation,CV)的SAR图像超像素分割算法。该算法首先对SAR图像进行各项异性高斯平滑预处理,使得图像相干斑得到平滑的同时边缘信息不被破坏;其次,采用CV估计边缘信息,使得图像的同质区与边缘区更容易区分;最后用加入边缘信息的SLIC算法进行聚类,生成超像素。实验结果表明:该算法在SAR图像分割下与3种经典超像素算法相比,其召回率至少提高了5%,且超像素个数大于400时,欠分割错误率降低了2%。该算法使得SAR图像超像素分割的准确度提高,其边缘和图像真实边缘更加贴切。
文摘针对简单线性迭代聚类(simple linear iterative cluste,SLIC)对含有乘性相干斑噪声的合成孔径雷达(synthetic aperture radar,SAR)图像边缘分割不理想的问题,在SLIC基础上提出了一种融合边缘信息的SAR图像超像素分割算法。首先,利用高斯方向平滑对SAR图像进行预处理,从而在抑制乘性相干斑噪声的同时有效保护边缘细节;其次,提出了一种基于指数加权平均比率(ratio of exponential weighted average,ROEWA)算子的改进相似度测量参量,以提高SAR图像的分割精度;最后,采用六边形初始化聚类中心与圆形区域的搜索方式进行局部区域聚类,从而保证了算法复杂度增加的同时,算法的运行时间不会明显变化。实验结果表明:与4种经典超像素算法相比,本文算法生成的超像素边缘更加贴合SAR图像的真实边缘且得到的超像素大小较为均匀。