SAR图像舰船目标检测时,因近海岸港口存在着复杂背景的问题,以至于重叠舰船目标无法被准确提取特征信息,造成近海岸的舰船目标出现漏检、误检的情况.针对以上问题,提出一种复杂场景下的SAR图像舰船检测算法,该算法基于YOLOv5进行改进,采...SAR图像舰船目标检测时,因近海岸港口存在着复杂背景的问题,以至于重叠舰船目标无法被准确提取特征信息,造成近海岸的舰船目标出现漏检、误检的情况.针对以上问题,提出一种复杂场景下的SAR图像舰船检测算法,该算法基于YOLOv5进行改进,采用SPPF结构加强提取特征信息,并融合原YOLOv5的SPP结构提取的特征信息,这种多级金字塔模块并列融合的方式能有效的检测多尺度舰船目标,使特征信息更好的表达;然后将原模型中的GIOU改进为CIOU,使其可以准确的回归出预测框的位置;最终为了更合理的筛选高于阈值的预测框,改进NMS(Non-Maximum-Suppression),采用Soft-NMS方法去惩罚衰减高于阈值的边框得分,合理的去除预测框.试验结果表明,该文改进的模型相比于原模型在SSDD、SAR-Ship-Dataset数据集上的mAP(mean Average Precision)提高了5.15%和5.06%,改进模型能有效检测近海岸中复杂背景下的SAR图像舰船目标.展开更多
文摘近年来,海战场成为现代战争的主要作战区域之一,舰船目标逐渐成为海上重点监测对象,能否快速准确地识别海战场舰船目标的战术意图,给指挥员的决策提供必要的支持,这关系到一场海上战役的成败。随着合成孔径雷达(synthetic aperture radar,SAR)成像技术的不断发展,大量SAR图像可用于舰船目标检测与识别。利用SAR图像进行舰船目标检测与识别,已经成为重要的海洋应用之一。针对传统SAR图像舰船检测方法准确率较低的问题,本文在YOLOv3的基础上,结合感受野(receptive field block,RFB)模块,提出一种增强型的SAR舰船检测方法。该方法在最近公开的SAR图像舰船检测数据集上平均准确率值达到了91.50%,与原YOLOv3相比提高了0.92%。实验结果充分表明本文提出的算法在SAR舰船的检测中具有较好的检测效果。
文摘SAR图像舰船目标检测时,因近海岸港口存在着复杂背景的问题,以至于重叠舰船目标无法被准确提取特征信息,造成近海岸的舰船目标出现漏检、误检的情况.针对以上问题,提出一种复杂场景下的SAR图像舰船检测算法,该算法基于YOLOv5进行改进,采用SPPF结构加强提取特征信息,并融合原YOLOv5的SPP结构提取的特征信息,这种多级金字塔模块并列融合的方式能有效的检测多尺度舰船目标,使特征信息更好的表达;然后将原模型中的GIOU改进为CIOU,使其可以准确的回归出预测框的位置;最终为了更合理的筛选高于阈值的预测框,改进NMS(Non-Maximum-Suppression),采用Soft-NMS方法去惩罚衰减高于阈值的边框得分,合理的去除预测框.试验结果表明,该文改进的模型相比于原模型在SSDD、SAR-Ship-Dataset数据集上的mAP(mean Average Precision)提高了5.15%和5.06%,改进模型能有效检测近海岸中复杂背景下的SAR图像舰船目标.