The constitutive modeling and springback simulation for AA2524 sheet in creep age forming(CAF) process were presented.A series of creep aging tests were performed on AA2524 at the temperature of 180-200 °C and ...The constitutive modeling and springback simulation for AA2524 sheet in creep age forming(CAF) process were presented.A series of creep aging tests were performed on AA2524 at the temperature of 180-200 °C and under the stress of 140-210 MPa for 16 h.Based on these experimental data,material constitutive equations which can well characterize creep aging behaviors of the tested alloy were developed.The effect of interior stress distributed along the sheet thickness on springback was simulated using FE software MSC.MARC by compiling the established constitutive models into the user subroutine.The simulation results showed that the amount of sheet springback was 61.12% when merely considering tensile stress existing along the sheet thickness;while sheet springback was up to 65.93% when taking both tensile and compressive stresses into account.In addition,an AA2524 rectangular sheet was subjected to CAF experiment in resistance furnace.The springback value of the formed rectangular sheet was 68.2%,which was much closer to 65.93%.This confirms that both tensile and compressive stresses across the sheet thickness should be considered in accurately predicting springback of the sheet after forming,which can be more consistent with experimental results.展开更多
On the basis of the global CO consumption rate model, the lumped product distribution model and the sedimenta- tion-dispersion model of a catalyst, a steady-state, one-dimensional mathematical model of the slurry bubb...On the basis of the global CO consumption rate model, the lumped product distribution model and the sedimenta- tion-dispersion model of a catalyst, a steady-state, one-dimensional mathematical model of the slurry bubble column reactor for Fischer-Tropsch synthesis were established. The mathematical simulation of the slurry bubble column reactor for Fischer-Tropsch synthesis was carried out under the following typical industrial operating conditions: temperature 230 ℃, pressure 3.0 MPa, gas flow 5x 105 m3/h, catalyst content in slurry phase 30%, reactor diameter 5.0 m and the composition of feed gas: y(H2)=0.60, y(CO)=0.30, y(N2)=0.10. The influences of operating pressure, temperature and re(HE)Ira(CO) in feed gas on the reactor's reaction performance were simulated.展开更多
This paper presents a superstructure-based formulation for the synthesis of mass-exchange networks (MENs) considering multiple components. The superstructure is simplified by directly using the mass separation agents ...This paper presents a superstructure-based formulation for the synthesis of mass-exchange networks (MENs) considering multiple components. The superstructure is simplified by directly using the mass separation agents (MSA) from their sources, and therefore the automatic synthesis of the multi-component system involved in the MENs can be achieved without choosing a 'key-component' either for the whole process or the mass exchangers. A mathematical model is proposed to carry out the optimization process. The concentrations, flow rates, matches and unit operation displayed in the obtained network constitute the exact representation of the mass exchange process in terms of all species in the system. An example is used to illustrate and demonstrate the application of the proposed method.展开更多
As a result of shortage supply of oil resources, the process for the alternative coal-based fuel, dimethyl ether (DME), has emerged as an important process in chemical engineering field. With the laboratory experime...As a result of shortage supply of oil resources, the process for the alternative coal-based fuel, dimethyl ether (DME), has emerged as an important process in chemical engineering field. With the laboratory experiment data about DME synthesis and separation, the production process for DME with high purity is proposed when one-step synthesis of DME in slurry bed reactor from syngas is adopted. On the basis of experimental research and process analysis, the proper unit modules and thermophysical calculation methods for the simulation process are selected. Incorporated the experimentally determined parameters of reaction dynamic model for DME synthesis, regression constants of parameters in non-random two-liquid equation (NRTL) model for binary component in DME separation system with built-in properties model, .the process flowsheet, is.developed and simulated on the Aspen Plus platform. The simulation results coincide well with data obtained in laboratory experiment. Accordingly, the accurate simulation results offer useful references to similar equipment design and process operation optimization.展开更多
Airframe structural optimization at different design stages results in new mass and stiffness distributions which modify the critical design loads envelop. Determination of aircraft critical loads is an extensive anal...Airframe structural optimization at different design stages results in new mass and stiffness distributions which modify the critical design loads envelop. Determination of aircraft critical loads is an extensive analysis procedure which involves simulating the aircraft at thousands of load cases as defmed in the certification requirements. It is computationally prohibitive to use a GFEM (Global Finite Element Model) for the load analysis, hence reduced order structural models are required which closely represent the dynamic characteristics of the GFEM. This paper presents the implementation of CMS (Component Mode Synthesis) method for the generation of high fidelity ROM (Reduced Order Model) of complex airframes. Here, sub-structuring technique is used to divide the complex higher order airframe dynamical system into a set of subsystems. Each subsystem is reduced to fewer degrees of freedom using matrix projection onto a carefully chosen reduced order basis subspace. The reduced structural matrices are assembled for all the subsystems through interface coupling and the dynamic response of the total system is solved. The CMS method is employed to develop the ROM of a Bombardier Aerospace business jet which is coupled with aerodynamic model for dynamic aeroelasticity loads analysis under gust turbulence. Another set of dynamic aeroelastic loads is also generated employing a stick model of same aircraft. Stick model is the reduced order modelling methodology commonly used in the aerospace industry based on stiffness generation by unitary loading application. The extracted aeroelastic loads from both models are compared against those generated employing the GFEM. Critical loads modal participation factors and modal characteristics of the different ROMs are investigated and compared against those of the GFEM. Results obtained show that the ROM generated using Craig Bampton CMS reduction process has a superior dynamic characteristics compared to the stick model.展开更多
Most research papers about parallel kinematic chainmechanisms investigate symmetric robot manipulators, in which all the limbs connecting the end-effector to the fixed based are composed by the same sequence of links ...Most research papers about parallel kinematic chainmechanisms investigate symmetric robot manipulators, in which all the limbs connecting the end-effector to the fixed based are composed by the same sequence of links and joints. Contrarily, in some manipulation tasks the velocity and stiffness requirements are anisotropic. In such cases, the asymmetric parallel kinematic chain mechanisms may offer advantages. This work objective is to present the synthesis, dynamic modeling and analysis of a 3-dof asymmetric parallel chain mechanism, conceived as a robot manipulator for pick-and-place operations. Firs't, a structural synthesis, resulting in a three translations end-effector, and a kinematic modeling are carried out. Then, the inverse dynamic modeling is developed by employing the virtual work principle. Based on the model equations and on the saturation of the mechanism actuators, a maximum acceleration analysis is performed and shows that although the mechanism has a parallel architecture its actuators influences on the 3-dof are quite decoupled.展开更多
In the recent biomechanical theory of cancer growth,solid tumors are considered as liquid-like materials comprising elastic components.In this fluid mechanical view,the expansion ability of a solid tumor into a host t...In the recent biomechanical theory of cancer growth,solid tumors are considered as liquid-like materials comprising elastic components.In this fluid mechanical view,the expansion ability of a solid tumor into a host tissue is mainly driven by either the cell diffusion constant or the cell division rate,with the latter depending on the local cell density(contact inhibition) or/and on the mechanical stress in the tumor.For the two by two degenerate parabolic/elliptic reaction-diffusion system that results from this modeling,the authors prove that there are always traveling waves above a minimal speed,and analyse their shapes.They appear to be complex with composite shapes and discontinuities.Several small parameters allow for analytical solutions,and in particular,the incompressible cells limit is very singular and related to the Hele-Shaw equation.These singular traveling waves are recovered numerically.展开更多
基金Project(2014CB046602)supported by the National Basic Research Program of ChinaProject(20120162110003)supported by Ph D Programs Foundation of Ministry of Education of China
文摘The constitutive modeling and springback simulation for AA2524 sheet in creep age forming(CAF) process were presented.A series of creep aging tests were performed on AA2524 at the temperature of 180-200 °C and under the stress of 140-210 MPa for 16 h.Based on these experimental data,material constitutive equations which can well characterize creep aging behaviors of the tested alloy were developed.The effect of interior stress distributed along the sheet thickness on springback was simulated using FE software MSC.MARC by compiling the established constitutive models into the user subroutine.The simulation results showed that the amount of sheet springback was 61.12% when merely considering tensile stress existing along the sheet thickness;while sheet springback was up to 65.93% when taking both tensile and compressive stresses into account.In addition,an AA2524 rectangular sheet was subjected to CAF experiment in resistance furnace.The springback value of the formed rectangular sheet was 68.2%,which was much closer to 65.93%.This confirms that both tensile and compressive stresses across the sheet thickness should be considered in accurately predicting springback of the sheet after forming,which can be more consistent with experimental results.
文摘On the basis of the global CO consumption rate model, the lumped product distribution model and the sedimenta- tion-dispersion model of a catalyst, a steady-state, one-dimensional mathematical model of the slurry bubble column reactor for Fischer-Tropsch synthesis were established. The mathematical simulation of the slurry bubble column reactor for Fischer-Tropsch synthesis was carried out under the following typical industrial operating conditions: temperature 230 ℃, pressure 3.0 MPa, gas flow 5x 105 m3/h, catalyst content in slurry phase 30%, reactor diameter 5.0 m and the composition of feed gas: y(H2)=0.60, y(CO)=0.30, y(N2)=0.10. The influences of operating pressure, temperature and re(HE)Ira(CO) in feed gas on the reactor's reaction performance were simulated.
基金Supported by the National Natural Science Foundation of China (20976022)
文摘This paper presents a superstructure-based formulation for the synthesis of mass-exchange networks (MENs) considering multiple components. The superstructure is simplified by directly using the mass separation agents (MSA) from their sources, and therefore the automatic synthesis of the multi-component system involved in the MENs can be achieved without choosing a 'key-component' either for the whole process or the mass exchangers. A mathematical model is proposed to carry out the optimization process. The concentrations, flow rates, matches and unit operation displayed in the obtained network constitute the exact representation of the mass exchange process in terms of all species in the system. An example is used to illustrate and demonstrate the application of the proposed method.
基金Supported by the National Technology Support Program of China(2006BAE02B02)the National Basic Research Program of China (2005CB221205)
文摘As a result of shortage supply of oil resources, the process for the alternative coal-based fuel, dimethyl ether (DME), has emerged as an important process in chemical engineering field. With the laboratory experiment data about DME synthesis and separation, the production process for DME with high purity is proposed when one-step synthesis of DME in slurry bed reactor from syngas is adopted. On the basis of experimental research and process analysis, the proper unit modules and thermophysical calculation methods for the simulation process are selected. Incorporated the experimentally determined parameters of reaction dynamic model for DME synthesis, regression constants of parameters in non-random two-liquid equation (NRTL) model for binary component in DME separation system with built-in properties model, .the process flowsheet, is.developed and simulated on the Aspen Plus platform. The simulation results coincide well with data obtained in laboratory experiment. Accordingly, the accurate simulation results offer useful references to similar equipment design and process operation optimization.
文摘Airframe structural optimization at different design stages results in new mass and stiffness distributions which modify the critical design loads envelop. Determination of aircraft critical loads is an extensive analysis procedure which involves simulating the aircraft at thousands of load cases as defmed in the certification requirements. It is computationally prohibitive to use a GFEM (Global Finite Element Model) for the load analysis, hence reduced order structural models are required which closely represent the dynamic characteristics of the GFEM. This paper presents the implementation of CMS (Component Mode Synthesis) method for the generation of high fidelity ROM (Reduced Order Model) of complex airframes. Here, sub-structuring technique is used to divide the complex higher order airframe dynamical system into a set of subsystems. Each subsystem is reduced to fewer degrees of freedom using matrix projection onto a carefully chosen reduced order basis subspace. The reduced structural matrices are assembled for all the subsystems through interface coupling and the dynamic response of the total system is solved. The CMS method is employed to develop the ROM of a Bombardier Aerospace business jet which is coupled with aerodynamic model for dynamic aeroelasticity loads analysis under gust turbulence. Another set of dynamic aeroelastic loads is also generated employing a stick model of same aircraft. Stick model is the reduced order modelling methodology commonly used in the aerospace industry based on stiffness generation by unitary loading application. The extracted aeroelastic loads from both models are compared against those generated employing the GFEM. Critical loads modal participation factors and modal characteristics of the different ROMs are investigated and compared against those of the GFEM. Results obtained show that the ROM generated using Craig Bampton CMS reduction process has a superior dynamic characteristics compared to the stick model.
文摘Most research papers about parallel kinematic chainmechanisms investigate symmetric robot manipulators, in which all the limbs connecting the end-effector to the fixed based are composed by the same sequence of links and joints. Contrarily, in some manipulation tasks the velocity and stiffness requirements are anisotropic. In such cases, the asymmetric parallel kinematic chain mechanisms may offer advantages. This work objective is to present the synthesis, dynamic modeling and analysis of a 3-dof asymmetric parallel chain mechanism, conceived as a robot manipulator for pick-and-place operations. Firs't, a structural synthesis, resulting in a three translations end-effector, and a kinematic modeling are carried out. Then, the inverse dynamic modeling is developed by employing the virtual work principle. Based on the model equations and on the saturation of the mechanism actuators, a maximum acceleration analysis is performed and shows that although the mechanism has a parallel architecture its actuators influences on the 3-dof are quite decoupled.
基金Project supported by the ANR grant PhysiCancer and the BMBF grant LungSys
文摘In the recent biomechanical theory of cancer growth,solid tumors are considered as liquid-like materials comprising elastic components.In this fluid mechanical view,the expansion ability of a solid tumor into a host tissue is mainly driven by either the cell diffusion constant or the cell division rate,with the latter depending on the local cell density(contact inhibition) or/and on the mechanical stress in the tumor.For the two by two degenerate parabolic/elliptic reaction-diffusion system that results from this modeling,the authors prove that there are always traveling waves above a minimal speed,and analyse their shapes.They appear to be complex with composite shapes and discontinuities.Several small parameters allow for analytical solutions,and in particular,the incompressible cells limit is very singular and related to the Hele-Shaw equation.These singular traveling waves are recovered numerically.