In nature, there are two conformational types of amino acids: L- and D-isomers. The L-amino acids are the predominant form and are used mainly for protein synthesis, while the D-amino acids are few in quantity but mor...In nature, there are two conformational types of amino acids: L- and D-isomers. The L-amino acids are the predominant form and are used mainly for protein synthesis, while the D-amino acids are few in quantity but more diverse in terms of their biological functions. D-amino acids are produced by many marine microbes, which are important players in carbon and energy cycles in the ocean. As the major constituent of the marine organic carbon pool, D-amino acids can persist in the water column for a long time before being further transformed by chemical or biological processes or transported through physical processes(such as absorption and aggregation). This article reviews the microbial synthesis of D-amino acids, their physiological function and metabolism in microbes, and the contribution of D-amino acids as a carbon source to the oceanic carbon reservoir.展开更多
基金the National Key Basic Research Program of China (Grant No. 2013CB955700)the State Oceanic Administration of China (SOA project) (Grant No. GASI-03-01-02-05)+1 种基金the National Natural Science Foundation of China (Grant No. 91428308)the project CNOOC-KJ 125 FZDXM 00 ZJ 001-2014
文摘In nature, there are two conformational types of amino acids: L- and D-isomers. The L-amino acids are the predominant form and are used mainly for protein synthesis, while the D-amino acids are few in quantity but more diverse in terms of their biological functions. D-amino acids are produced by many marine microbes, which are important players in carbon and energy cycles in the ocean. As the major constituent of the marine organic carbon pool, D-amino acids can persist in the water column for a long time before being further transformed by chemical or biological processes or transported through physical processes(such as absorption and aggregation). This article reviews the microbial synthesis of D-amino acids, their physiological function and metabolism in microbes, and the contribution of D-amino acids as a carbon source to the oceanic carbon reservoir.