A dual-reactor, assembled with the on-line syngas conditioning and methanol synthesis, was successfully applied for high efficient conversion of rich CO2 bio-oil derived syngas to bio-methanol. In the forepart catalys...A dual-reactor, assembled with the on-line syngas conditioning and methanol synthesis, was successfully applied for high efficient conversion of rich CO2 bio-oil derived syngas to bio-methanol. In the forepart catalyst bed reactor, the catalytic conversion can effectively adjust the rich-CO2 crude bio-syngas into the CO-containing bio-syngas using the CuZnA1Zr catalyst. After the on-line syngas conditioning at 450℃, the CO2/CO ratio in the blo- syngas significantly decreased from 6.3 to 1.2. In the rearward catalyst bed reactor, the conversion of the conditioned bio-syngas to bio-methanol shows the maximum yield about 1.21 kg/(kgcatarh) MeOH with a methanol selectivity of 97.9% at 260 ~C and 5.05 MPa using conventional CuZnA1 catalyst, which is close to the level typically obtained in the conventional methanol synthesis process using natural gas. The influences of temperature, pressure and space velocity on the bio-methanol synthesis were also investigated in detail.展开更多
A series of Mo-based catalysts prepared by sol-gel method using citric acid as complexant were successfully applied in the high efficient production of mixed alcohols from bio-syngas, derived from the biomass gasifica...A series of Mo-based catalysts prepared by sol-gel method using citric acid as complexant were successfully applied in the high efficient production of mixed alcohols from bio-syngas, derived from the biomass gasification. The Cu1Co1Fe1MO1Zn0.5-6%K catalyst exhibited a higher activity on the space-time yield of mixed alcohols, compared with the other Mobased catalysts. The carbon conversion significantly increases with rising temperature below 340 ℃, but the alcohol selectivity has an opposite trend. The maximum mixed alcohols yield derived from biomass gasification is 494.8 g/(kg catal·h) with the C2+ (C2-C6 higher alcohols) alcohols of 80.4% under the tested conditions. The alcohol distributions are consistent with the Schulz-Flory plots, except methanol. In the alcohols products, the C2+ alcohols (higher alcohols) dominate with a weight ratio of 70%-85%. The Mo-based cata- lysts have been characterized by X-ray diffraction and N2 adsorption/desorption. The clean bio-fules of mixed alcohols derived from bio-syngas with higher octane values could be used as transportation fuels or petrol additives.展开更多
The two major challenges in industrial enzymatic catalysis are the limited number of chemical reaction types that are catalyzed by enzymes and the instability of enzymes under harsh conditions in industrial catalysis....The two major challenges in industrial enzymatic catalysis are the limited number of chemical reaction types that are catalyzed by enzymes and the instability of enzymes under harsh conditions in industrial catalysis.Expanding enzyme catalysis to a larger substrate scope and greater variety of chemical reactions and tuning the microenvironment surrounding enzyme molecules to achieve high enzyme performance are urgently needed.In this account,we focus on our efforts using the de novo approach to synthesis hybrid enzyme catalysts that can address these two challenges and the structure-function relationship is discussed to reveal the principles of designing hybrid enzyme catalysts.We hope that this account will promote further efforts toward fundamental research and wide applications of designed enzyme hybrid catalysts for expanding biocatalysis.展开更多
A biomorphic CeO2microtube with multiple-pore structure was fabricated by using the cotton as biotemplate,throughcerium nitrate solution infiltration and thermal decomposition.Field emission scanning electron microsco...A biomorphic CeO2microtube with multiple-pore structure was fabricated by using the cotton as biotemplate,throughcerium nitrate solution infiltration and thermal decomposition.Field emission scanning electron microscope(FESEM),powder X-raydiffraction(XRD),transmission electron microscope(TEM),N2adsorption?desorption isotherms,temperature-programmedreduction(TPR)and CO oxidation were used to characterize the samples.The results indicated that the synthesized products werecomposed of crystallites with grain size about9nm and exhibited a fibrous morphology similar to the original template andpossessed a specific surface area(BET)of62.3m2/g.Compared with the conventional CeO2particles,the synthesized materialsshowed a superior catalytic activity for CO oxidation.For the synthesized fibrous CeO2,the CO conversion at320°C was above90%and a100%CO conversion was obtained at410°C.展开更多
The glucose mass transfer in the biosynthesis of succinic acid with immobilized Actinobacillus succinogenes cells has been comparatively analyzed for a bioreactor with mobile bed vs. a stationary basket bioreactor. Th...The glucose mass transfer in the biosynthesis of succinic acid with immobilized Actinobacillus succinogenes cells has been comparatively analyzed for a bioreactor with mobile bed vs. a stationary basket bioreactor. The process has been considered to occur under substrate and product inhibitory effects. The results indicated that the bioreactor with mobile bed is more efficient for biocatalyst particles with a diameter over 3 mm, while the basket bioreactor is more efficient for smaller biocatalyst particles and basket bed thickness below 5 mm. The performances of both configurations of immobilized A. succinogenes cell beds were found to be superior to the column packed bed bioreactor.展开更多
The project "SolMethCO2" deals with the options of an effective methanol synthesis from atmospheric or industrial CO2 sources by implementing solar energy. First part of the projects is a wide-range survey of the ma...The project "SolMethCO2" deals with the options of an effective methanol synthesis from atmospheric or industrial CO2 sources by implementing solar energy. First part of the projects is a wide-range survey of the many different processes and sub-processes that may be involved in methanol production and of the possibilities how to make these processes available for solarization. The different fields of research were CO2 capturing, Hg/syngas-synthesis, biotechnological techniques for methanol synthesis, photocatalytical approaches and solar reactor.展开更多
In the present study, we developed a novel approach for the synthesis of the tetracyclic core of fumigaclavines A–D. A palladium-catalyzed intramolecular Larock indole synthesis was utilized to assemble the B/C rings...In the present study, we developed a novel approach for the synthesis of the tetracyclic core of fumigaclavines A–D. A palladium-catalyzed intramolecular Larock indole synthesis was utilized to assemble the B/C rings of the tetracyclic core in one step. Although all attempts to convert compound 18 to fumigaclavine B failed, this study provided useful information for the total synthesis of fumigaclavines A–D.展开更多
基金This work was supported by the National High Tech Research and Development Program (No.2009AA05Z435), the National Basic Research Program of Ministry of Science and Technology of China (No.2007CB210206), and the National Natural Science Foundation of China (No.50772107).
文摘A dual-reactor, assembled with the on-line syngas conditioning and methanol synthesis, was successfully applied for high efficient conversion of rich CO2 bio-oil derived syngas to bio-methanol. In the forepart catalyst bed reactor, the catalytic conversion can effectively adjust the rich-CO2 crude bio-syngas into the CO-containing bio-syngas using the CuZnA1Zr catalyst. After the on-line syngas conditioning at 450℃, the CO2/CO ratio in the blo- syngas significantly decreased from 6.3 to 1.2. In the rearward catalyst bed reactor, the conversion of the conditioned bio-syngas to bio-methanol shows the maximum yield about 1.21 kg/(kgcatarh) MeOH with a methanol selectivity of 97.9% at 260 ~C and 5.05 MPa using conventional CuZnA1 catalyst, which is close to the level typically obtained in the conventional methanol synthesis process using natural gas. The influences of temperature, pressure and space velocity on the bio-methanol synthesis were also investigated in detail.
基金This work is supported Technical Research and by the National High Development Program (No.2009AA05Z435), the National Basic Research Program of Ministry of Science and Technology of China (No.2007CB210206), and the National Natural Science Foundation of China (No.50772107).
文摘A series of Mo-based catalysts prepared by sol-gel method using citric acid as complexant were successfully applied in the high efficient production of mixed alcohols from bio-syngas, derived from the biomass gasification. The Cu1Co1Fe1MO1Zn0.5-6%K catalyst exhibited a higher activity on the space-time yield of mixed alcohols, compared with the other Mobased catalysts. The carbon conversion significantly increases with rising temperature below 340 ℃, but the alcohol selectivity has an opposite trend. The maximum mixed alcohols yield derived from biomass gasification is 494.8 g/(kg catal·h) with the C2+ (C2-C6 higher alcohols) alcohols of 80.4% under the tested conditions. The alcohol distributions are consistent with the Schulz-Flory plots, except methanol. In the alcohols products, the C2+ alcohols (higher alcohols) dominate with a weight ratio of 70%-85%. The Mo-based cata- lysts have been characterized by X-ray diffraction and N2 adsorption/desorption. The clean bio-fules of mixed alcohols derived from bio-syngas with higher octane values could be used as transportation fuels or petrol additives.
文摘The two major challenges in industrial enzymatic catalysis are the limited number of chemical reaction types that are catalyzed by enzymes and the instability of enzymes under harsh conditions in industrial catalysis.Expanding enzyme catalysis to a larger substrate scope and greater variety of chemical reactions and tuning the microenvironment surrounding enzyme molecules to achieve high enzyme performance are urgently needed.In this account,we focus on our efforts using the de novo approach to synthesis hybrid enzyme catalysts that can address these two challenges and the structure-function relationship is discussed to reveal the principles of designing hybrid enzyme catalysts.We hope that this account will promote further efforts toward fundamental research and wide applications of designed enzyme hybrid catalysts for expanding biocatalysis.
基金Projects(21277094,51478285,21407111) supported by the National Natural Science Foundation of ChinaProjects(BK20140280,BK20151198) supported by the Natural Science Foundation of Jiangsu Province,China+4 种基金Project(14KJA430004) supported by Collegiate Natural Science Fund of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),ChinaProject supported by Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment,ChinaProject supported Excellent Innovation Team in Science and Technology of Education Department of Jiangsu Province,ChinaProjects(SJHG1304,SJHG1310,SJHG1404) supported by the Jiangsu Key Laboratory for Environment Functional Materials,China
文摘A biomorphic CeO2microtube with multiple-pore structure was fabricated by using the cotton as biotemplate,throughcerium nitrate solution infiltration and thermal decomposition.Field emission scanning electron microscope(FESEM),powder X-raydiffraction(XRD),transmission electron microscope(TEM),N2adsorption?desorption isotherms,temperature-programmedreduction(TPR)and CO oxidation were used to characterize the samples.The results indicated that the synthesized products werecomposed of crystallites with grain size about9nm and exhibited a fibrous morphology similar to the original template andpossessed a specific surface area(BET)of62.3m2/g.Compared with the conventional CeO2particles,the synthesized materialsshowed a superior catalytic activity for CO oxidation.For the synthesized fibrous CeO2,the CO conversion at320°C was above90%and a100%CO conversion was obtained at410°C.
基金Supported by the Grant PN-II-PT-PCCA-2011-3.1-1268 authorized by The National Council for Scientific Research-Executive Unit for Financing Higher Education,Research,Development and Innovation(CNCS-UEFISCDI)
文摘The glucose mass transfer in the biosynthesis of succinic acid with immobilized Actinobacillus succinogenes cells has been comparatively analyzed for a bioreactor with mobile bed vs. a stationary basket bioreactor. The process has been considered to occur under substrate and product inhibitory effects. The results indicated that the bioreactor with mobile bed is more efficient for biocatalyst particles with a diameter over 3 mm, while the basket bioreactor is more efficient for smaller biocatalyst particles and basket bed thickness below 5 mm. The performances of both configurations of immobilized A. succinogenes cell beds were found to be superior to the column packed bed bioreactor.
文摘The project "SolMethCO2" deals with the options of an effective methanol synthesis from atmospheric or industrial CO2 sources by implementing solar energy. First part of the projects is a wide-range survey of the many different processes and sub-processes that may be involved in methanol production and of the possibilities how to make these processes available for solarization. The different fields of research were CO2 capturing, Hg/syngas-synthesis, biotechnological techniques for methanol synthesis, photocatalytical approaches and solar reactor.
基金National Natural Science Foundation of China(Grant No.21372017)
文摘In the present study, we developed a novel approach for the synthesis of the tetracyclic core of fumigaclavines A–D. A palladium-catalyzed intramolecular Larock indole synthesis was utilized to assemble the B/C rings of the tetracyclic core in one step. Although all attempts to convert compound 18 to fumigaclavine B failed, this study provided useful information for the total synthesis of fumigaclavines A–D.