The paper aims to challenge non-GPS navigation problems by using visual sensors and geo-referenced images. An area-based method is proposed to estimate full navigation parameters(FNPs), including attitude, altitude an...The paper aims to challenge non-GPS navigation problems by using visual sensors and geo-referenced images. An area-based method is proposed to estimate full navigation parameters(FNPs), including attitude, altitude and horizontal position, for unmanned aerial vehicle(UAV) navigation. Our method is composed of three main modules: geometric transfer function, local normalized sobel energy image(LNSEI) based objective function and simplex-simulated annealing(SSA) based optimization algorithm. The adoption of relatively rich scene information and LNSEI, makes it possible to yield a solution robustly even in the presence of very noisy cases, such as multi-modal and/or multi-temporal images that differ in the type of visual sensor, season, illumination, weather, and so on, and also to handle the sparsely textured regions where features are barely detected or matched. Simulation experiments using many synthetic images clearly support noise resistance and estimation accuracy, and experimental results using 2367 real images show the maximum estimation error of 5.16(meter) for horizontal position, 9.72(meter) for altitude and 0.82(degree) for attitude.展开更多
基金美国国家自然科学基金NSF Thermal Systems Program(CTS-9213183)NSF Information Technology Research Program(ACI-0113851)+1 种基金北京理工大学优秀青年教师资助计划(2007Y1103)北京理工大学基础研究基金资助项目(20071142001)
文摘The paper aims to challenge non-GPS navigation problems by using visual sensors and geo-referenced images. An area-based method is proposed to estimate full navigation parameters(FNPs), including attitude, altitude and horizontal position, for unmanned aerial vehicle(UAV) navigation. Our method is composed of three main modules: geometric transfer function, local normalized sobel energy image(LNSEI) based objective function and simplex-simulated annealing(SSA) based optimization algorithm. The adoption of relatively rich scene information and LNSEI, makes it possible to yield a solution robustly even in the presence of very noisy cases, such as multi-modal and/or multi-temporal images that differ in the type of visual sensor, season, illumination, weather, and so on, and also to handle the sparsely textured regions where features are barely detected or matched. Simulation experiments using many synthetic images clearly support noise resistance and estimation accuracy, and experimental results using 2367 real images show the maximum estimation error of 5.16(meter) for horizontal position, 9.72(meter) for altitude and 0.82(degree) for attitude.