In this article, poly(2-hydroxyethylmethacrylate-co-acrylamide) hydrogels were synthesized by bulk free-radical copolymerization of 2-hydroxyethylmethacrylate (HEMA) and acrylamide (AAm) for soft contact lens(...In this article, poly(2-hydroxyethylmethacrylate-co-acrylamide) hydrogels were synthesized by bulk free-radical copolymerization of 2-hydroxyethylmethacrylate (HEMA) and acrylamide (AAm) for soft contact lens(SCL)-based ophthalmic drug delivery system. The copolymer was characterized with FT-IR and SEM, the swelling property of the hydrogels were studied by gravimetrical method, and chloramphenicol was used as a model drug to investigate drug release profile of the hydrogels. The results showed that poly(2-hydroxyethylmethacrylateco-acrylamide) hydrogels were transparent and useful SCL biomaterial, the water content increased as AAm content increase and pH decrease, and in the same way, hydrogel composition affected chloramphenicol release process too. Migration rate of chloramphenicol increased as the AAm content in the hydrogels increased in the first stage of diffusion process, whereas there was no significant difference thereafter.展开更多
Two nonfoaming bubble separation techniques, air stripping and solvent sublation, are presented and discussed in order to recover butyl acetate (BA) from discharged wastewater after solvent extraction of penicillin. R...Two nonfoaming bubble separation techniques, air stripping and solvent sublation, are presented and discussed in order to recover butyl acetate (BA) from discharged wastewater after solvent extraction of penicillin. Results show air stripping is not suitable for the recovery of BA from the wastewater. Axial concentration of BA had a noted maximum point along the column. In contrast, solvent sublation is very effective to recover BA from the wastewater. In solvent sublation experiments, axial concentration of BA along the column first increased and then decreased from the bottom to the top because of two primary mass transport processes. One is the transport by adsorption or attachment to ascending bubbles, and the other is by dispersion at water-solvent interface and by water film in organic solvent layer. In order to elucidate the high removal efficiency in solvent sublation, the microstructure of the wastewater was studied with optic microscope, which was showed to be an emulsion of BA in water at large concentration of BA. Solvent sublation can be successfully used in the removal of BA from its emulsion in the wastewater. The surface tension of simulated solution composed of lysozyme and BA was studied to understand mutual effect of biological materials and BA. Results show that lysozyme affects the adsorption of BA at air-water interface and they may form a complex between BA and lysozyme molecules.展开更多
Lead has caused serious environmental pollution due to its toxicity, accumulation in food chains and persistence in nature. In this paper, removal of lead from aqueous solutions is investigated using a novel gel adsor...Lead has caused serious environmental pollution due to its toxicity, accumulation in food chains and persistence in nature. In this paper, removal of lead from aqueous solutions is investigated using a novel gel adsorbent synthesized from natural condensed tannin. The novel adsorbent performs in aqueous solutions as a weak base with valid basic groups of 1.2mmol·g-1 tannin gel particles and therefore results in the elevation of pH value of aqueous solutions. Even when initial pH is 3.6, final pH at equilibrium can climb up to 6.5 that is above the pH value for Pb(OH)2 precipitation formation and then lead can be removed from wastewater by this so-called surface precipitation. The adsorption isotherm can be expressed by the Langmuir equation and the maximum capacity for adsorption of Pb is up to 92 mg·g-1 (based on dry adsorbent) when initial pH value is 3.6. Hence, the adsorbent does offer favorable properties in lead removal with respect to its high adsorption capacity at low initial pH value, which is advantageous to lead removal from acidic wastewater. A model is put forward to describe the individual adsorption phenomenon of the tannin gel adsorbent.展开更多
A kind of novel copolymer hydrogel of poly(N, N-dimethylaminoethyl methacrylate-co-N-isopropylacrylamide) (poly[DMAEMA/NIPAAm]) was synthesized by the initiation of K2S2O8, N, N'-methylene-bis(acrylamide) (Bis...A kind of novel copolymer hydrogel of poly(N, N-dimethylaminoethyl methacrylate-co-N-isopropylacrylamide) (poly[DMAEMA/NIPAAm]) was synthesized by the initiation of K2S2O8, N, N'-methylene-bis(acrylamide) (Bis) was used as the crosslinker. The effects of monomer content, pH and temperature on swelling ratio of the hydrogel were investigated; the thermo-sensitivity in deionized water and in physiological saline was determined. It showed that the swelling ratio of the hydrogel could be changed by changing the temperature or pH alternately. Both swelling ratio and LCST (Lower Critical Solution Temperature) of the hydrogel decreased with the increase of NIPAAm in the co-polymer content.展开更多
基金Supported by the Natural Science Foundation of Guangdong Province (5300978) and Zhongkai University of Agriculture and Engineering (G2360221).
文摘In this article, poly(2-hydroxyethylmethacrylate-co-acrylamide) hydrogels were synthesized by bulk free-radical copolymerization of 2-hydroxyethylmethacrylate (HEMA) and acrylamide (AAm) for soft contact lens(SCL)-based ophthalmic drug delivery system. The copolymer was characterized with FT-IR and SEM, the swelling property of the hydrogels were studied by gravimetrical method, and chloramphenicol was used as a model drug to investigate drug release profile of the hydrogels. The results showed that poly(2-hydroxyethylmethacrylateco-acrylamide) hydrogels were transparent and useful SCL biomaterial, the water content increased as AAm content increase and pH decrease, and in the same way, hydrogel composition affected chloramphenicol release process too. Migration rate of chloramphenicol increased as the AAm content in the hydrogels increased in the first stage of diffusion process, whereas there was no significant difference thereafter.
基金Supported by the National Natural Science Foundation of China (No. 20406021, No. 20236050 and No. 20221603).
文摘Two nonfoaming bubble separation techniques, air stripping and solvent sublation, are presented and discussed in order to recover butyl acetate (BA) from discharged wastewater after solvent extraction of penicillin. Results show air stripping is not suitable for the recovery of BA from the wastewater. Axial concentration of BA had a noted maximum point along the column. In contrast, solvent sublation is very effective to recover BA from the wastewater. In solvent sublation experiments, axial concentration of BA along the column first increased and then decreased from the bottom to the top because of two primary mass transport processes. One is the transport by adsorption or attachment to ascending bubbles, and the other is by dispersion at water-solvent interface and by water film in organic solvent layer. In order to elucidate the high removal efficiency in solvent sublation, the microstructure of the wastewater was studied with optic microscope, which was showed to be an emulsion of BA in water at large concentration of BA. Solvent sublation can be successfully used in the removal of BA from its emulsion in the wastewater. The surface tension of simulated solution composed of lysozyme and BA was studied to understand mutual effect of biological materials and BA. Results show that lysozyme affects the adsorption of BA at air-water interface and they may form a complex between BA and lysozyme molecules.
文摘Lead has caused serious environmental pollution due to its toxicity, accumulation in food chains and persistence in nature. In this paper, removal of lead from aqueous solutions is investigated using a novel gel adsorbent synthesized from natural condensed tannin. The novel adsorbent performs in aqueous solutions as a weak base with valid basic groups of 1.2mmol·g-1 tannin gel particles and therefore results in the elevation of pH value of aqueous solutions. Even when initial pH is 3.6, final pH at equilibrium can climb up to 6.5 that is above the pH value for Pb(OH)2 precipitation formation and then lead can be removed from wastewater by this so-called surface precipitation. The adsorption isotherm can be expressed by the Langmuir equation and the maximum capacity for adsorption of Pb is up to 92 mg·g-1 (based on dry adsorbent) when initial pH value is 3.6. Hence, the adsorbent does offer favorable properties in lead removal with respect to its high adsorption capacity at low initial pH value, which is advantageous to lead removal from acidic wastewater. A model is put forward to describe the individual adsorption phenomenon of the tannin gel adsorbent.
文摘A kind of novel copolymer hydrogel of poly(N, N-dimethylaminoethyl methacrylate-co-N-isopropylacrylamide) (poly[DMAEMA/NIPAAm]) was synthesized by the initiation of K2S2O8, N, N'-methylene-bis(acrylamide) (Bis) was used as the crosslinker. The effects of monomer content, pH and temperature on swelling ratio of the hydrogel were investigated; the thermo-sensitivity in deionized water and in physiological saline was determined. It showed that the swelling ratio of the hydrogel could be changed by changing the temperature or pH alternately. Both swelling ratio and LCST (Lower Critical Solution Temperature) of the hydrogel decreased with the increase of NIPAAm in the co-polymer content.