The interface toughness of adhesively bonded structural members is one of the critical parameters for adhesive joint design. It is often assumed that the joint toughness is a material constant so that its value can be...The interface toughness of adhesively bonded structural members is one of the critical parameters for adhesive joint design. It is often assumed that the joint toughness is a material constant so that its value can be obtained from fracture tests of simple geometries such as DCB for Mode-Ⅰ, ENF for Mode-Ⅱ, using linear elastic fracture mechanics (LEFM). However, the LEFM assumption of point-wise crack-tip fracture process is overly simplistic and may cause significant error in interpreting fracture test data. In this paper, the accuracy and applicability of various traditional beam-bending-theory based methods for fracture toughness evaluation, such as simple beam theory (SBT), corrected beam theory (CBT) and experimental compliance method (ECM), were assessed using the cohesive zone modelling (CZM) approach. It was demonstrated that the fracture process zone (FPZ) size has profound influence on toughness calculation and unfortunately, all the classic beam-bending theories based methods fail to include this important element and are erroneous especially when the ratio of crack length to FPZ size is relatively small (〈5.0). It has also been demonstrated that after the FPZ size is incorporated into simple beam formulations, they provide much improved evaluation for fracture toughness. Formulation of first order estimate of FPZ size is aIso given in this paper.展开更多
Abstract: In a test-fixture that the authors were using, steel tabs adhesively bonded to an aluminum panel debonded before the design load on the real test panel was fully applied. Therefore, studying behavior of adh...Abstract: In a test-fixture that the authors were using, steel tabs adhesively bonded to an aluminum panel debonded before the design load on the real test panel was fully applied. Therefore, studying behavior of adhesive joints for joining dissimilar materials was deemed to be necessary. To determine the failure load responsible for debonding of adhesive joints of two dissimilar materials, stress distributions in adhesive joints as obtained by a nonlinear finite element model of the test-fixture were studied under a gradually increasing compression-shear load. It was observed that in-plane stresses were responsible for the debonding of the steel tabs. To achieve a better understanding of adhesive joints of dissimilar materials, finite element models of adhesive lap joints and ADCB (asymmetric double cantilever beam) were studied, under loadings similar to the loading faced by the test-fixture. The analysis was performed using ABAQUS, a commercially available software, and the cohesive zone modeling was used to study the debonding growth.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 10272088), and the Program for New Century Excellent Talents in University, China
文摘The interface toughness of adhesively bonded structural members is one of the critical parameters for adhesive joint design. It is often assumed that the joint toughness is a material constant so that its value can be obtained from fracture tests of simple geometries such as DCB for Mode-Ⅰ, ENF for Mode-Ⅱ, using linear elastic fracture mechanics (LEFM). However, the LEFM assumption of point-wise crack-tip fracture process is overly simplistic and may cause significant error in interpreting fracture test data. In this paper, the accuracy and applicability of various traditional beam-bending-theory based methods for fracture toughness evaluation, such as simple beam theory (SBT), corrected beam theory (CBT) and experimental compliance method (ECM), were assessed using the cohesive zone modelling (CZM) approach. It was demonstrated that the fracture process zone (FPZ) size has profound influence on toughness calculation and unfortunately, all the classic beam-bending theories based methods fail to include this important element and are erroneous especially when the ratio of crack length to FPZ size is relatively small (〈5.0). It has also been demonstrated that after the FPZ size is incorporated into simple beam formulations, they provide much improved evaluation for fracture toughness. Formulation of first order estimate of FPZ size is aIso given in this paper.
文摘Abstract: In a test-fixture that the authors were using, steel tabs adhesively bonded to an aluminum panel debonded before the design load on the real test panel was fully applied. Therefore, studying behavior of adhesive joints for joining dissimilar materials was deemed to be necessary. To determine the failure load responsible for debonding of adhesive joints of two dissimilar materials, stress distributions in adhesive joints as obtained by a nonlinear finite element model of the test-fixture were studied under a gradually increasing compression-shear load. It was observed that in-plane stresses were responsible for the debonding of the steel tabs. To achieve a better understanding of adhesive joints of dissimilar materials, finite element models of adhesive lap joints and ADCB (asymmetric double cantilever beam) were studied, under loadings similar to the loading faced by the test-fixture. The analysis was performed using ABAQUS, a commercially available software, and the cohesive zone modeling was used to study the debonding growth.