The fluidity of fresh cemented tailings backfill(CTB) slurry depends on its rheological properties. Hence, it is crucial to understand the rheology of fresh CTB slurry, which is related to the cement hydration progr...The fluidity of fresh cemented tailings backfill(CTB) slurry depends on its rheological properties. Hence, it is crucial to understand the rheology of fresh CTB slurry, which is related to the cement hydration progress and temperature evolution within CTB mixtures. For this reason, a numerical model was developed to predict the evolution of the rheological properties of fresh CTB slurry under the coupled effect of cement hydration and temperature. Experiments were conducted to investigate the rheological behaviours of the fresh CTB slurry. By comparing the simulated results with the experimental ones, the availability of this developed model was validated. Thereafter, the model was used to demonstrate the coupled effect of cement hydration and temperature on the evolution of fresh CTB slurry's rheological properties, under various conditions(initial CTB temperature, cement to tailings ratio, and water to cement ratio). The obtained results are helpful to better understanding the rheology of CTB slurry.展开更多
Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM ...Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM is suitable for various kinds of traffic flow parameters. Gap statistics and domain knowledge of traffic flow are used to determine a proper number of clusters. The expectation-maximization (E-M) algorithm is used to estimate parameters of the GMM model. The clustered traffic flow pattems are then analyzed statistically and utilized for designing maximum likelihood classifiers for grouping real-time traffic flow data when new observations become available. Clustering analysis and pattern recognition can also be used to cluster and classify dynamic traffic flow patterns for freeway on-ramp and off-ramp weaving sections as well as for other facilities or things involving the concept of level of service, such as airports, parking lots, intersections, interrupted-flow pedestrian facilities, etc.展开更多
Isothermal compression tests in a wide range of temperatures (300-500 ℃) and strain rates (0.001-10 s^-1), were performed on 2099 alloy to reveal the hot deformation characteristics. In order to give a precise pr...Isothermal compression tests in a wide range of temperatures (300-500 ℃) and strain rates (0.001-10 s^-1), were performed on 2099 alloy to reveal the hot deformation characteristics. In order to give a precise prediction of flow behavior, the obtained experimental data were modified by friction and temperature correction and then employed to derive the constitutive modeling. The effects of the temperature and strain rate on hot deformation behavior can be expressed by Zener-Hollomon parameter including Arrhenius term. Furthermore, the influence of strain was incorporated in the constitutive analysis by considering the effect of strain on material constants (i.e. a, n, Q and A). Consequently, the flow stress curves predicted by the developed modeling show a good agreement with the corrected ones, which indicates that the developed constitutive modeling could give an accurate and precise prediction for the flow stress of 2099 alloy.展开更多
The hot working behaviors of Mg-9Y-1MM-0.6Zr (WE91) magnesium alloy were researched in a temperature range of 653 773 K and strain rate range of 0.001 1 s 1 on Gleeble 1500D hot simulator under the maximum deformati...The hot working behaviors of Mg-9Y-1MM-0.6Zr (WE91) magnesium alloy were researched in a temperature range of 653 773 K and strain rate range of 0.001 1 s 1 on Gleeble 1500D hot simulator under the maximum deformation degree of 60%. A mathematical model was established to predict the stress—strain curves of this alloy during deformation. The experimental results show that the relationship between stress and strain is obviously affected by the strain rates and deformation temperatures. The flow stress of WE91 magnesium alloy during high temperature deformation can be represented by Zener-Hollomon parameter in the hyperbolic Arrhenius-type equation, and the stress—strain curves obtained by the established model are in good agreement with the experimental results,which prove that the model reflects the real deformation characteristics of the WE91 alloy. The average deformation activation energy is 220 kJ/mol at strain of 0.1. The microstructures of WE91 during deformation processing are influenced by temperature and strain rates.展开更多
Hot compression tests of an extruded Al-1.1Mn-0.3Mg-0.25RE alloy were performed on Gleeble-1500 system in the temperature range of 300-500 ℃ and strain rate range of 0.01-10 s-l. The associated microstructural evolut...Hot compression tests of an extruded Al-1.1Mn-0.3Mg-0.25RE alloy were performed on Gleeble-1500 system in the temperature range of 300-500 ℃ and strain rate range of 0.01-10 s-l. The associated microstructural evolutions were studied by observation of optical and transmission electron microscopes. The results show that the peak stress level decreases with increasing deformation temperature and decreasing strain rate, which can be represented by a Zener-Hollomon parameter in the hyperbolic-sine equation with the hot deformation activation energy of 186.48 kJ/mol. The steady flow behavior results from dynamic recovery whereas flow softening is associated with dynamic recrystallization and dynamic transformation of constituent particles. The main constituent particles are enriched rare earth phases. Positive purifying effects on impurity elements of Fe and Si are shown in the Al-l.lMn-0.3Mg-0.25RE alloy, which increases the workability at high temperature. Processing map was calculated and an optimum processing was determined with deformation temperature of 440-450 ℃ and strain rate of 0.01 s-1.展开更多
Seventeen coupled general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed to assess the relationships of interannual variations of sea surface temperature (SST) betwe...Seventeen coupled general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed to assess the relationships of interannual variations of sea surface temperature (SST) between the tropical Pacific (TP) and tropical Indian Ocean (TIO). The eastern/central equatorial Pacific features the strongest SST interannual variability in the models except for the model CSIRO-Mk3-6-0, and the simulated maximum and minimum are produced by models GFDL-ESM2M and GISS-E2-H respectively. However, It remains a challenge for these models to simulate the correct climate mean SST with the warm pool-cold tongue structure in the equatorial Pacific. Almost all models reproduce E1 Nifio-Southem Oscillation (ENSO), Indian Ocean Dipole mode (IOD) and Indian Ocean Basin-wide mode (lOB) together with their seasonal phase lock features being simulated; but the relationship between the ENSO and IOD is different for different models. Consistent with the observation, an Indian Ocean basin-wide warming (cooling) takes place over the tropical Indian Ocean in the spring following an E1 Nifio (La Nifia) in almost all the models. In some models (e.g., GFDL-ESM2G and MIROC5), positive ENSO and IOB events are stronger than the negative events as shown in the observation. However, this asymmetry is reversed in some other models (e.g., HadGEM2-CC and HadGEM2-ES).展开更多
Isothermal compression tests were conducted to predict the hot deformational flow stress behaviour of 2024AI-T3 alloy with respect to a wide range of strain rates (0.001-100 s l), strains (0.1-0.5) and temperatur...Isothermal compression tests were conducted to predict the hot deformational flow stress behaviour of 2024AI-T3 alloy with respect to a wide range of strain rates (0.001-100 s l), strains (0.1-0.5) and temperatures (573-773 K). The prediction capabilities of various constitutive models for 2024A1 alloys and a recently developed constitutive model were evaluated using statistical parameters such as the average absolute relative error (AARE) and the correlation coefficient (R). Models recorded the lowest AARE (4.6%) and the highest correlation coefficient (R=0.99) were developed compared with the other models. Hence, this model can track the deformational behaviour of 2027Al-T3 alloy more accurately compared with other models throughout the entire processing domain investigated.展开更多
Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fl...Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fluid dynamics(CFD)method are both employed by this new model,and thermal effects are also considered.Hydrostatic turntable systems with a series of oil supply pressures,various oil recess depth and several surface roughness parameters are studied.Performance parameters,such as turntable displacement,system flow rate,temperature rise of lubrication,stiffness and damping coefficients,are derived from different working parameters(rotational speed of turntable and exerted external load)of the hydrostatic turntable.Numerical results obtained from this FSI-thermal model are presented and discussed,and theoretical predictions are in good agreement with the experimental data.Therefore,this developed model is a very useful tool for studying hydrostatic turntables.The calculation results show that in order to obtain better performance,a rational selection of the design parameters is essential.展开更多
Based on twin-roll casting, a cast-rolling force model was proposed to predict the rolling force in the bimetal solid-liquid cast-rolling bonding(SLCRB) process. The solid-liquid bonding zone was assumed to be below t...Based on twin-roll casting, a cast-rolling force model was proposed to predict the rolling force in the bimetal solid-liquid cast-rolling bonding(SLCRB) process. The solid-liquid bonding zone was assumed to be below the kiss point(KP). The deformation resistance of the liquid zone was ignored. Then, the calculation model was derived. A 2D thermal-flow coupled simulation was established to provide a basis for the parameters in the model, and then the rolling forces of the Cu/Al clad strip at different rolling speeds were calculated. Meanwhile, through measurement experiments, the accuracy of the model was verified. The influence of the rolling speed, the substrate strip thickness, and the material on the rolling force was obtained. The results indicate that the rolling force decreases with the increase of the rolling speed and increases with the increase of the thickness and thermal conductivity of the substrate strip. The rolling force is closely related to the KP height. Therefore, the formulation of reasonable process parameters to control the KP height is of great significance to the stability of cast-rolling forming.展开更多
This study evaluates the simulation of summer rainfall changes in the Northern Indian Ocean (NIO) based on the fifth phase of Coupled Model Intercomparison Project (CMIP5). The historical runs of 20 CMIP5 coupled Gene...This study evaluates the simulation of summer rainfall changes in the Northern Indian Ocean (NIO) based on the fifth phase of Coupled Model Intercomparison Project (CMIP5). The historical runs of 20 CMIP5 coupled General Circulation Models (GCMs) are analyzed. The Multi-Model ensemble (MME) of the CMIP5 models well reproduces the general feature of NIO summer rainfall. For a short period 1979?2005, 14 out of 20 models show an increased trend in the mean rainfall and a similar spatial distri-bution to the Global Precipitation Climatology Project (GPCP) observations in MME. The increasing of the convergence in the equatorial IO results in the increase of rainfall significantly. The equatorial rainfall trend patterns seem modulated by the SST warm-ing in the tropical Indian Ocean, which confirm the mechanism of 'warmer-get-wetter' theory. For a long period 1950?2005, the trend of monsoon rainfall over India shows a decrease over the most parts of the India except an increase over the south corn er of the Indian Peninsula, due to a weakened summer monsoon circulation. The pattern is well simulated in half of the CMIP5 models. The rainfall over the north India is different for a short period, in which rainfall increases in 1979?2005, implying possible decadal varia-tion in the NIO summer climate.展开更多
From the viewpoint of interaction mechanics for solid and gas, a coupled mathematical model was presented for solid coal/rock deformation and gas leak flow in parallel deformable coal seams. Numerical solutions using ...From the viewpoint of interaction mechanics for solid and gas, a coupled mathematical model was presented for solid coal/rock deformation and gas leak flow in parallel deformable coal seams. Numerical solutions using the SIP (Strong Implicit Proce- dure) method to the coupled mathematical model for double parallel coal seams were also developed in detail. Numerical simulations for the prediction of the safety range using protection layer mining were performed with experimental data from a mine with potential danger of coal/gas outbursts. Analyses show that the numerical simulation results are consistent with the measured data in situ.展开更多
A modified Rushton impeller with two circular covering-plates mounted on the upper and lower sides of the blades was designed.There are gaps between the plates and the blades.The turbulent hydrodynamics was analyzed b...A modified Rushton impeller with two circular covering-plates mounted on the upper and lower sides of the blades was designed.There are gaps between the plates and the blades.The turbulent hydrodynamics was analyzed by the computational fluid dynamics(CFD) method.Firstly,the reliability of the numerical model and simulation method was verified by comparing with the experimental results from literature.Subsequently,the power consumption,flow pattern,mean velocity and mixing time of the covering-plate Rushton impeller(RT-C) were studied and compared with the standard Rushton impeller(RT) operated under the same conditions.Results show that the power consumption can be decreased about 18%.Compared with the almost unchanged flow field in the lower stirred tank,the mean velocity was increased at the upper half of the stirred tank.And in the impeller region,the mean axial and radial velocities were increased,the mean tangential velocity was decreased.In addition,the average mixing time of RT-C was shortened about 4.14% than the counterpart of RT.The conclusions obtained here indicated that RT-C has a more effective mixing performance and it can be used as an alternative of RT in the process industries.展开更多
Based on the COHERENS model (a coupled hydrodynamic ecological model for regional and shelf seas), a numerical hydrodynamic model of the Hangzhou Bay, influenced by tide, regional winds and freshwater from the Yangtze...Based on the COHERENS model (a coupled hydrodynamic ecological model for regional and shelf seas), a numerical hydrodynamic model of the Hangzhou Bay, influenced by tide, regional winds and freshwater from the Yangtze River and the Qiantangjiang River was established. The Lagrangian particle tracking was simulated to provide tracer trajectories. For convenience, the modeling area was divided into 8 subdomains and the modeling focused on March (dry season) and July (wet season). Numerical simulation and analysis indicate that the tracer trajectories originated in different subdomains are quite different. Most particles released in the mouth of the bay move outside the bay quickly and reach the farthest place at 122.5°E; while particles released in the inner part of the bay mostly remain in the same subdomain, with only minor migrations in two opposite directions along the shore. The tracer experiments also indicate that the northwest region of the bay is an area where pollutant can easily accumulate in both wet and dry seasons, and that the southeast region of the bay is another area for pollutant to accumulate in dry season because it is the main path for the contaminant.展开更多
The mixing time of impact zone in liquid-continuous impinging streams reactor(LISR) is theoretically calculated by empirical model and modern micromixing model of the fluid mixing process, and the variation laws of ma...The mixing time of impact zone in liquid-continuous impinging streams reactor(LISR) is theoretically calculated by empirical model and modern micromixing model of the fluid mixing process, and the variation laws of macromixing time and micromixing time are quantitatively discussed. The results show that under a continuous and stable operating condition, as the paddle speed increases, the macromixing time and micromixing time calculated by the two models both decrease, even in a linkage equilibrium state. Simultaneously, as the paddle speed increases, the results figured by the two models tend to be consistent. It indicates that two models both are more suitable for calculation of mixing time in high paddle speed. Compared with the existing experimental results of this type of reactor, the mixing time computed in the speed of 1500 r/min is closer to it. These conclusions can provide an important reference for systematically studying the strengthening mechanism of LISR under continuous mixing conditions.展开更多
The comprehensive nonlinear flow behaviors of a ductile alloy play a significant role in the numerical analysis of its forming process. The accurate characterization of as-forged Ti-13 Nb-13 Zr alloy was conducted by ...The comprehensive nonlinear flow behaviors of a ductile alloy play a significant role in the numerical analysis of its forming process. The accurate characterization of as-forged Ti-13 Nb-13 Zr alloy was conducted by an improved intelligent algorithm, GA-SVR, the combination of genetic algorithm(GA) and support vector regression(SVR). The GA-SVR model learns from a training dataset and then is verified by a test dataset. As for the generalization ability of the solved GA-SVR model, no matter in β phase temperature range or(α+β) phase temperature range, the correlation coefficient R-values are always larger than 0.9999, and the AARE-values are always lower than 0.18%. The solved GA-SVR model accurately tracks the highly-nonlinear flow behaviors of Ti-13 Nb-13 Zr alloy. The stress-strain data expanded by this model are input into finite element solver, and the computation accuracy is improved.展开更多
To investigate the flow behavior of 2219 Al alloy during warm deformation, the thermal compression test was conducted in the temperature range of 483-573 K and the strain rate range of 0.001-5 s^-1 on a Gleeble-3500 t...To investigate the flow behavior of 2219 Al alloy during warm deformation, the thermal compression test was conducted in the temperature range of 483-573 K and the strain rate range of 0.001-5 s^-1 on a Gleeble-3500 thermomechanical simulation unit. The true stress-true strain curves obtained showed that the flow stress increased with the decrease in temperature and/or the increase in strain rate and the softening mechanism primarily proceeded via dynamic recovery. The modification on the conventional Arrhenius-type constitutive model approach was made, the material variables and activation energy were determined to be dependent on the deformation parameters. The modified flow stresses were found to be in close agreement with the experimental values. Furthermore, the activation energy obtained under different deformation conditions showed that it decreased with the rise in temperature and/or strain rate, and was also affected by the coupled effect of strain and strain rate.展开更多
The cell model developed since 1950s is a useful tool forexploring the behavior of particle assemblages, but it demandsfurther careful development of the outer boundary conditions so thatinteraction in a particle swar...The cell model developed since 1950s is a useful tool forexploring the behavior of particle assemblages, but it demandsfurther careful development of the outer boundary conditions so thatinteraction in a particle swarm is better represented. In this paper,the cell model and its development were reviewed, and themodifications of outer cell boundary conditions were suggested. Atthe cell outer boundary, the restriction of uniform liquid flow wasremoved in our simulation conducted in the reference frame fixed withthe particle.展开更多
基金Project(SKLCRSM13KFB05)supported by State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology(Beijing)
文摘The fluidity of fresh cemented tailings backfill(CTB) slurry depends on its rheological properties. Hence, it is crucial to understand the rheology of fresh CTB slurry, which is related to the cement hydration progress and temperature evolution within CTB mixtures. For this reason, a numerical model was developed to predict the evolution of the rheological properties of fresh CTB slurry under the coupled effect of cement hydration and temperature. Experiments were conducted to investigate the rheological behaviours of the fresh CTB slurry. By comparing the simulated results with the experimental ones, the availability of this developed model was validated. Thereafter, the model was used to demonstrate the coupled effect of cement hydration and temperature on the evolution of fresh CTB slurry's rheological properties, under various conditions(initial CTB temperature, cement to tailings ratio, and water to cement ratio). The obtained results are helpful to better understanding the rheology of CTB slurry.
基金The US National Science Foundation (No. CMMI-0408390,CMMI-0644552)the American Chemical Society Petroleum Research Foundation (No.PRF-44468-G9)+3 种基金the Research Fellowship for International Young Scientists (No.51050110143)the Fok Ying-Tong Education Foundation (No.114024)the Natural Science Foundation of Jiangsu Province (No.BK2009015)the Postdoctoral Science Foundation of Jiangsu Province (No.0901005C)
文摘Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM is suitable for various kinds of traffic flow parameters. Gap statistics and domain knowledge of traffic flow are used to determine a proper number of clusters. The expectation-maximization (E-M) algorithm is used to estimate parameters of the GMM model. The clustered traffic flow pattems are then analyzed statistically and utilized for designing maximum likelihood classifiers for grouping real-time traffic flow data when new observations become available. Clustering analysis and pattern recognition can also be used to cluster and classify dynamic traffic flow patterns for freeway on-ramp and off-ramp weaving sections as well as for other facilities or things involving the concept of level of service, such as airports, parking lots, intersections, interrupted-flow pedestrian facilities, etc.
文摘Isothermal compression tests in a wide range of temperatures (300-500 ℃) and strain rates (0.001-10 s^-1), were performed on 2099 alloy to reveal the hot deformation characteristics. In order to give a precise prediction of flow behavior, the obtained experimental data were modified by friction and temperature correction and then employed to derive the constitutive modeling. The effects of the temperature and strain rate on hot deformation behavior can be expressed by Zener-Hollomon parameter including Arrhenius term. Furthermore, the influence of strain was incorporated in the constitutive analysis by considering the effect of strain on material constants (i.e. a, n, Q and A). Consequently, the flow stress curves predicted by the developed modeling show a good agreement with the corrected ones, which indicates that the developed constitutive modeling could give an accurate and precise prediction for the flow stress of 2099 alloy.
基金Projects(2007CB613704,2007CB613705)supported by the National Basic Research Program of China
文摘The hot working behaviors of Mg-9Y-1MM-0.6Zr (WE91) magnesium alloy were researched in a temperature range of 653 773 K and strain rate range of 0.001 1 s 1 on Gleeble 1500D hot simulator under the maximum deformation degree of 60%. A mathematical model was established to predict the stress—strain curves of this alloy during deformation. The experimental results show that the relationship between stress and strain is obviously affected by the strain rates and deformation temperatures. The flow stress of WE91 magnesium alloy during high temperature deformation can be represented by Zener-Hollomon parameter in the hyperbolic Arrhenius-type equation, and the stress—strain curves obtained by the established model are in good agreement with the experimental results,which prove that the model reflects the real deformation characteristics of the WE91 alloy. The average deformation activation energy is 220 kJ/mol at strain of 0.1. The microstructures of WE91 during deformation processing are influenced by temperature and strain rates.
基金Project(31115014)supported by the of Open Research Fund Program of State Key Laboratory of Advanced Design and Manufacture forVehicle Body(Hunan University)Project(12JJ9017)supported by the Natural Science Foundation of Hunan Province,China
文摘Hot compression tests of an extruded Al-1.1Mn-0.3Mg-0.25RE alloy were performed on Gleeble-1500 system in the temperature range of 300-500 ℃ and strain rate range of 0.01-10 s-l. The associated microstructural evolutions were studied by observation of optical and transmission electron microscopes. The results show that the peak stress level decreases with increasing deformation temperature and decreasing strain rate, which can be represented by a Zener-Hollomon parameter in the hyperbolic-sine equation with the hot deformation activation energy of 186.48 kJ/mol. The steady flow behavior results from dynamic recovery whereas flow softening is associated with dynamic recrystallization and dynamic transformation of constituent particles. The main constituent particles are enriched rare earth phases. Positive purifying effects on impurity elements of Fe and Si are shown in the Al-l.lMn-0.3Mg-0.25RE alloy, which increases the workability at high temperature. Processing map was calculated and an optimum processing was determined with deformation temperature of 440-450 ℃ and strain rate of 0.01 s-1.
基金supported by the National Basic Research Program of China 2012CB955602 and 2012CB955603the Natural Science Foundation of China(41176006,40921004 and 41106010)
文摘Seventeen coupled general circulation models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed to assess the relationships of interannual variations of sea surface temperature (SST) between the tropical Pacific (TP) and tropical Indian Ocean (TIO). The eastern/central equatorial Pacific features the strongest SST interannual variability in the models except for the model CSIRO-Mk3-6-0, and the simulated maximum and minimum are produced by models GFDL-ESM2M and GISS-E2-H respectively. However, It remains a challenge for these models to simulate the correct climate mean SST with the warm pool-cold tongue structure in the equatorial Pacific. Almost all models reproduce E1 Nifio-Southem Oscillation (ENSO), Indian Ocean Dipole mode (IOD) and Indian Ocean Basin-wide mode (lOB) together with their seasonal phase lock features being simulated; but the relationship between the ENSO and IOD is different for different models. Consistent with the observation, an Indian Ocean basin-wide warming (cooling) takes place over the tropical Indian Ocean in the spring following an E1 Nifio (La Nifia) in almost all the models. In some models (e.g., GFDL-ESM2G and MIROC5), positive ENSO and IOB events are stronger than the negative events as shown in the observation. However, this asymmetry is reversed in some other models (e.g., HadGEM2-CC and HadGEM2-ES).
文摘Isothermal compression tests were conducted to predict the hot deformational flow stress behaviour of 2024AI-T3 alloy with respect to a wide range of strain rates (0.001-100 s l), strains (0.1-0.5) and temperatures (573-773 K). The prediction capabilities of various constitutive models for 2024A1 alloys and a recently developed constitutive model were evaluated using statistical parameters such as the average absolute relative error (AARE) and the correlation coefficient (R). Models recorded the lowest AARE (4.6%) and the highest correlation coefficient (R=0.99) were developed compared with the other models. Hence, this model can track the deformational behaviour of 2027Al-T3 alloy more accurately compared with other models throughout the entire processing domain investigated.
基金Projects (51175518,51705147) supported by the National Natural Science Foundation of China
文摘Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fluid dynamics(CFD)method are both employed by this new model,and thermal effects are also considered.Hydrostatic turntable systems with a series of oil supply pressures,various oil recess depth and several surface roughness parameters are studied.Performance parameters,such as turntable displacement,system flow rate,temperature rise of lubrication,stiffness and damping coefficients,are derived from different working parameters(rotational speed of turntable and exerted external load)of the hydrostatic turntable.Numerical results obtained from this FSI-thermal model are presented and discussed,and theoretical predictions are in good agreement with the experimental data.Therefore,this developed model is a very useful tool for studying hydrostatic turntables.The calculation results show that in order to obtain better performance,a rational selection of the design parameters is essential.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(51974278)the Distinguished Young Fund of Natural Science Foundation of Hebei Province,China(E2018203446).
文摘Based on twin-roll casting, a cast-rolling force model was proposed to predict the rolling force in the bimetal solid-liquid cast-rolling bonding(SLCRB) process. The solid-liquid bonding zone was assumed to be below the kiss point(KP). The deformation resistance of the liquid zone was ignored. Then, the calculation model was derived. A 2D thermal-flow coupled simulation was established to provide a basis for the parameters in the model, and then the rolling forces of the Cu/Al clad strip at different rolling speeds were calculated. Meanwhile, through measurement experiments, the accuracy of the model was verified. The influence of the rolling speed, the substrate strip thickness, and the material on the rolling force was obtained. The results indicate that the rolling force decreases with the increase of the rolling speed and increases with the increase of the thickness and thermal conductivity of the substrate strip. The rolling force is closely related to the KP height. Therefore, the formulation of reasonable process parameters to control the KP height is of great significance to the stability of cast-rolling forming.
基金supported by the National Basic Research Program of China(2012CB955603,2010CB-950302)the Chinese Academy of Sciences(XDA 05090404,LTOZZ1202)
文摘This study evaluates the simulation of summer rainfall changes in the Northern Indian Ocean (NIO) based on the fifth phase of Coupled Model Intercomparison Project (CMIP5). The historical runs of 20 CMIP5 coupled General Circulation Models (GCMs) are analyzed. The Multi-Model ensemble (MME) of the CMIP5 models well reproduces the general feature of NIO summer rainfall. For a short period 1979?2005, 14 out of 20 models show an increased trend in the mean rainfall and a similar spatial distri-bution to the Global Precipitation Climatology Project (GPCP) observations in MME. The increasing of the convergence in the equatorial IO results in the increase of rainfall significantly. The equatorial rainfall trend patterns seem modulated by the SST warm-ing in the tropical Indian Ocean, which confirm the mechanism of 'warmer-get-wetter' theory. For a long period 1950?2005, the trend of monsoon rainfall over India shows a decrease over the most parts of the India except an increase over the south corn er of the Indian Peninsula, due to a weakened summer monsoon circulation. The pattern is well simulated in half of the CMIP5 models. The rainfall over the north India is different for a short period, in which rainfall increases in 1979?2005, implying possible decadal varia-tion in the NIO summer climate.
文摘From the viewpoint of interaction mechanics for solid and gas, a coupled mathematical model was presented for solid coal/rock deformation and gas leak flow in parallel deformable coal seams. Numerical solutions using the SIP (Strong Implicit Proce- dure) method to the coupled mathematical model for double parallel coal seams were also developed in detail. Numerical simulations for the prediction of the safety range using protection layer mining were performed with experimental data from a mine with potential danger of coal/gas outbursts. Analyses show that the numerical simulation results are consistent with the measured data in situ.
基金Supported by the Key Development Foundation of Shandong province(2016GGX103035)
文摘A modified Rushton impeller with two circular covering-plates mounted on the upper and lower sides of the blades was designed.There are gaps between the plates and the blades.The turbulent hydrodynamics was analyzed by the computational fluid dynamics(CFD) method.Firstly,the reliability of the numerical model and simulation method was verified by comparing with the experimental results from literature.Subsequently,the power consumption,flow pattern,mean velocity and mixing time of the covering-plate Rushton impeller(RT-C) were studied and compared with the standard Rushton impeller(RT) operated under the same conditions.Results show that the power consumption can be decreased about 18%.Compared with the almost unchanged flow field in the lower stirred tank,the mean velocity was increased at the upper half of the stirred tank.And in the impeller region,the mean axial and radial velocities were increased,the mean tangential velocity was decreased.In addition,the average mixing time of RT-C was shortened about 4.14% than the counterpart of RT.The conclusions obtained here indicated that RT-C has a more effective mixing performance and it can be used as an alternative of RT in the process industries.
基金Supported by National Natural Science Foundation of China (No 40576080)National High Technology Research and Development Program of China ("863" Program, No 2007AA12Z182)
文摘Based on the COHERENS model (a coupled hydrodynamic ecological model for regional and shelf seas), a numerical hydrodynamic model of the Hangzhou Bay, influenced by tide, regional winds and freshwater from the Yangtze River and the Qiantangjiang River was established. The Lagrangian particle tracking was simulated to provide tracer trajectories. For convenience, the modeling area was divided into 8 subdomains and the modeling focused on March (dry season) and July (wet season). Numerical simulation and analysis indicate that the tracer trajectories originated in different subdomains are quite different. Most particles released in the mouth of the bay move outside the bay quickly and reach the farthest place at 122.5°E; while particles released in the inner part of the bay mostly remain in the same subdomain, with only minor migrations in two opposite directions along the shore. The tracer experiments also indicate that the northwest region of the bay is an area where pollutant can easily accumulate in both wet and dry seasons, and that the southeast region of the bay is another area for pollutant to accumulate in dry season because it is the main path for the contaminant.
基金Project(51276131)supported by the National Natural Science Foundation of ChinaProject(ZRZ0316)supported by the Natural Science Foundation of Hubei Province,ChinaProject(2013070104010025)supported by the Morning Glory Project of Wuhan Science and Technology Bureau,China
文摘The mixing time of impact zone in liquid-continuous impinging streams reactor(LISR) is theoretically calculated by empirical model and modern micromixing model of the fluid mixing process, and the variation laws of macromixing time and micromixing time are quantitatively discussed. The results show that under a continuous and stable operating condition, as the paddle speed increases, the macromixing time and micromixing time calculated by the two models both decrease, even in a linkage equilibrium state. Simultaneously, as the paddle speed increases, the results figured by the two models tend to be consistent. It indicates that two models both are more suitable for calculation of mixing time in high paddle speed. Compared with the existing experimental results of this type of reactor, the mixing time computed in the speed of 1500 r/min is closer to it. These conclusions can provide an important reference for systematically studying the strengthening mechanism of LISR under continuous mixing conditions.
基金Project(cstc2018jcyjAX0459) supported by Chongqing Basic Research and Frontier Exploration Program,ChinaProjects(2019CDQYTM027,2019CDJGFCL003,2018CDPTCG0001-6,2019CDXYCL0031) supported by the Fundamental Research Funds for the Central Universities,China
文摘The comprehensive nonlinear flow behaviors of a ductile alloy play a significant role in the numerical analysis of its forming process. The accurate characterization of as-forged Ti-13 Nb-13 Zr alloy was conducted by an improved intelligent algorithm, GA-SVR, the combination of genetic algorithm(GA) and support vector regression(SVR). The GA-SVR model learns from a training dataset and then is verified by a test dataset. As for the generalization ability of the solved GA-SVR model, no matter in β phase temperature range or(α+β) phase temperature range, the correlation coefficient R-values are always larger than 0.9999, and the AARE-values are always lower than 0.18%. The solved GA-SVR model accurately tracks the highly-nonlinear flow behaviors of Ti-13 Nb-13 Zr alloy. The stress-strain data expanded by this model are input into finite element solver, and the computation accuracy is improved.
基金Projects(U1637601,51405520,51327902) supported by the National Natural Science Foundation of ChinaProject(ZZYJKT2017-06) supported by State Key Laboratory of High Performance Complex Manufacturing of Central South University,China
文摘To investigate the flow behavior of 2219 Al alloy during warm deformation, the thermal compression test was conducted in the temperature range of 483-573 K and the strain rate range of 0.001-5 s^-1 on a Gleeble-3500 thermomechanical simulation unit. The true stress-true strain curves obtained showed that the flow stress increased with the decrease in temperature and/or the increase in strain rate and the softening mechanism primarily proceeded via dynamic recovery. The modification on the conventional Arrhenius-type constitutive model approach was made, the material variables and activation energy were determined to be dependent on the deformation parameters. The modified flow stresses were found to be in close agreement with the experimental values. Furthermore, the activation energy obtained under different deformation conditions showed that it decreased with the rise in temperature and/or strain rate, and was also affected by the coupled effect of strain and strain rate.
基金Supported by the National Natural Science Foundation of China (No. 29836130).
文摘The cell model developed since 1950s is a useful tool forexploring the behavior of particle assemblages, but it demandsfurther careful development of the outer boundary conditions so thatinteraction in a particle swarm is better represented. In this paper,the cell model and its development were reviewed, and themodifications of outer cell boundary conditions were suggested. Atthe cell outer boundary, the restriction of uniform liquid flow wasremoved in our simulation conducted in the reference frame fixed withthe particle.