To solve the low efficiency of electric excitation claw-pole synchronous generator(EECPSG) and regulate the magnetic field of permanent magnet (PM) claw-pole synchronous generator(PMCPSG), a novel hybrid excitat...To solve the low efficiency of electric excitation claw-pole synchronous generator(EECPSG) and regulate the magnetic field of permanent magnet (PM) claw-pole synchronous generator(PMCPSG), a novel hybrid excitation claw-pole synchronous generator (HECPSG)with magnetic circuit series connection is proposed. Through the simulation study on the generator using the calculation method for magnetic circuit and 3-D finite element method (FEA), the appropriate magnet thickness and the number of pole-pairs for the proposed generator are determined. Its off-loading characteristics, load characteristics, and regulation behaviors are investigated. The study shows that the appropriate number of pole-pairs in HECPSG with series magnetic circuits is two, and there exists an optimum magnet thickness. Compared to EECPSG, HECPSG realizes dual-directional control to the excitation current. Moreover, the generator can adjust the output voltage and keep the output voltage stable in a broad load range. Under the condition of same parametes, the motor has higer air-gap flux density and power density.展开更多
Xenopus ZFP36L1 (zinc finger protein 36, C3H type-like 1) belongs to the ZFP36 family of RNA-binding proteins, which contains two characteristic tandem CCCH-type zinc-finger domains. The ZFP36 proteins can bind AU-r...Xenopus ZFP36L1 (zinc finger protein 36, C3H type-like 1) belongs to the ZFP36 family of RNA-binding proteins, which contains two characteristic tandem CCCH-type zinc-finger domains. The ZFP36 proteins can bind AU-rich elements in 3' untranslated regions of target mRNAs and promote their turnover. However, the expression and role of ZFP36 genes during neural development in Xenopus embryos remains largely unknown. The present study showed that Xenopus ZFP36L1 was expressed at the dorsal part of the forebrain, forebrain-midbrain boundary, and midbrain-hindbrain boundary from late neurula stages to tadpole stages of embryonic development. Overexpression of XZFP36L1 in Xenopus embryos inhibited neural induction and differentiation, leading to severe neural tube defects. The function of XZP36L1 requires both its zinc finger and C terminal domains, which also affect its subcellular localization. These results suggest that XZFP36L1 is likely involved in neural development in Xenopus and might play an important role in post-transcriptional regulation.展开更多
基金Supported by the National Natural Science Foundation of China(50337030)the Natural Science Foundation of Shanghai(08ZR1408600)the Natural Science Foundation of Shanghai Dianji University(08C410)~~
文摘To solve the low efficiency of electric excitation claw-pole synchronous generator(EECPSG) and regulate the magnetic field of permanent magnet (PM) claw-pole synchronous generator(PMCPSG), a novel hybrid excitation claw-pole synchronous generator (HECPSG)with magnetic circuit series connection is proposed. Through the simulation study on the generator using the calculation method for magnetic circuit and 3-D finite element method (FEA), the appropriate magnet thickness and the number of pole-pairs for the proposed generator are determined. Its off-loading characteristics, load characteristics, and regulation behaviors are investigated. The study shows that the appropriate number of pole-pairs in HECPSG with series magnetic circuits is two, and there exists an optimum magnet thickness. Compared to EECPSG, HECPSG realizes dual-directional control to the excitation current. Moreover, the generator can adjust the output voltage and keep the output voltage stable in a broad load range. Under the condition of same parametes, the motor has higer air-gap flux density and power density.
基金Foundation items: This work was supported by National Natural Science Foundation of China (90919039 C120106) Acknowledgements We thank the National Institute for Basic Biology, Japan, for the X1073h24 clone.
文摘Xenopus ZFP36L1 (zinc finger protein 36, C3H type-like 1) belongs to the ZFP36 family of RNA-binding proteins, which contains two characteristic tandem CCCH-type zinc-finger domains. The ZFP36 proteins can bind AU-rich elements in 3' untranslated regions of target mRNAs and promote their turnover. However, the expression and role of ZFP36 genes during neural development in Xenopus embryos remains largely unknown. The present study showed that Xenopus ZFP36L1 was expressed at the dorsal part of the forebrain, forebrain-midbrain boundary, and midbrain-hindbrain boundary from late neurula stages to tadpole stages of embryonic development. Overexpression of XZFP36L1 in Xenopus embryos inhibited neural induction and differentiation, leading to severe neural tube defects. The function of XZP36L1 requires both its zinc finger and C terminal domains, which also affect its subcellular localization. These results suggest that XZFP36L1 is likely involved in neural development in Xenopus and might play an important role in post-transcriptional regulation.