随着光伏和风能等可再生能源在柔性配电网中的比例不断提高,可再生能源发电的间歇性输出给电力系统带来了不稳定性与波动性。现有的柔性合环开关因为硬件参数和容量限制,无法应对负荷超容量波动带来的频率超限及潮流转移造成的电网开路...随着光伏和风能等可再生能源在柔性配电网中的比例不断提高,可再生能源发电的间歇性输出给电力系统带来了不稳定性与波动性。现有的柔性合环开关因为硬件参数和容量限制,无法应对负荷超容量波动带来的频率超限及潮流转移造成的电网开路问题。因此,有必要将柔性合环开关与储能技术相结合,构建新型柔性互联配电网,对带电池储能系统的多端口柔性合环开关设计相应的控制策略。首先,对于硬件参数不同和工作状态差异造成的储能单元荷电状态(state of charge,SOC)不均衡,设计自适应的SOC均衡控制策略。其次,对负荷大波动和稳压侧开路故障,设计切换策略以调节电网频率并进行短时直流电压支撑,确保下级负荷的稳定运行。最后,利用基于MATLAB/Simulink平台的仿真模型和RTLAB硬件在环平台验证了所提协调控制策略的有效性和实用性。展开更多
文摘随着光伏和风能等可再生能源在柔性配电网中的比例不断提高,可再生能源发电的间歇性输出给电力系统带来了不稳定性与波动性。现有的柔性合环开关因为硬件参数和容量限制,无法应对负荷超容量波动带来的频率超限及潮流转移造成的电网开路问题。因此,有必要将柔性合环开关与储能技术相结合,构建新型柔性互联配电网,对带电池储能系统的多端口柔性合环开关设计相应的控制策略。首先,对于硬件参数不同和工作状态差异造成的储能单元荷电状态(state of charge,SOC)不均衡,设计自适应的SOC均衡控制策略。其次,对负荷大波动和稳压侧开路故障,设计切换策略以调节电网频率并进行短时直流电压支撑,确保下级负荷的稳定运行。最后,利用基于MATLAB/Simulink平台的仿真模型和RTLAB硬件在环平台验证了所提协调控制策略的有效性和实用性。