In this paper, the (G′/G)-expansion method is extended to solve fractional partial differential equations in the sense of modified Riemann-Liouville derivative. Based on a nonlinear fractional complex transformation,...In this paper, the (G′/G)-expansion method is extended to solve fractional partial differential equations in the sense of modified Riemann-Liouville derivative. Based on a nonlinear fractional complex transformation, a certain fractional partial differential equation can be turned into another ordinary differential equation of integer order. For illustrating the validity of this method, we apply it to the space-time fractional generalized Hirota-Satsuma coupled KdV equations and the time-fractional fifth-order Sawada-Kotera equation. As a result, some new exact solutions for them are successfully established.展开更多
The following coupled Schrodinger system with a small perturbationis considered, where β and ε are small parameters. The whole system has a periodic solution with the aid of a Fourier series expansion technique, and...The following coupled Schrodinger system with a small perturbationis considered, where β and ε are small parameters. The whole system has a periodic solution with the aid of a Fourier series expansion technique, and its dominant system has a heteroclinic solution. Then adjusting some appropriate constants and applying the fixed point theorem and the perturbation method yield that this heteroclinic solution deforms to a heteroclinic solution exponentially approaching the obtained periodic solution (called the generalized heteroclinic solution thereafter).展开更多
文摘In this paper, the (G′/G)-expansion method is extended to solve fractional partial differential equations in the sense of modified Riemann-Liouville derivative. Based on a nonlinear fractional complex transformation, a certain fractional partial differential equation can be turned into another ordinary differential equation of integer order. For illustrating the validity of this method, we apply it to the space-time fractional generalized Hirota-Satsuma coupled KdV equations and the time-fractional fifth-order Sawada-Kotera equation. As a result, some new exact solutions for them are successfully established.
基金supported by the National Natural Science Foundation of China(Nos.11126292,11201239,11371314)the Guangdong Natural Science Foundation(No.S2013010015957)the Project of Department of Education of Guangdong Province(No.2012KJCX0074)
文摘The following coupled Schrodinger system with a small perturbationis considered, where β and ε are small parameters. The whole system has a periodic solution with the aid of a Fourier series expansion technique, and its dominant system has a heteroclinic solution. Then adjusting some appropriate constants and applying the fixed point theorem and the perturbation method yield that this heteroclinic solution deforms to a heteroclinic solution exponentially approaching the obtained periodic solution (called the generalized heteroclinic solution thereafter).