The structural, electronic and elastic properties of common intermetallic compounds in FeTiCoNiVCrMnCuAI system high entropy alloy were investigated by the first principles calculation. The calculation results of form...The structural, electronic and elastic properties of common intermetallic compounds in FeTiCoNiVCrMnCuAI system high entropy alloy were investigated by the first principles calculation. The calculation results of formation enthalpy and cohesive energy show that FeTi, Fe2Ti, AlCrFe2, Co2Ti, AlMn2V and Mn2Ti phases may form in the formation process of the alloy. Further studies show that FeTi, FezTi, AlCrFe2, Co2Ti and AlMn2V phases with higher shear modulus and elastic modulus would be excellent strengthening phases in high entropy alloy and would improve the hardness of the alloy. In addition, the partial density of states was investigated for revealing the bonding mode, and the analyses on the strength of p-d hybridization also reveal the underlying mechanism for the elastic properties of these compounds.展开更多
The structural stability, electronic structures, elastic properties and thermodynamic properties of the main binary phases Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca in Mg-Al-Ca-Sn alloy were determined from the ...The structural stability, electronic structures, elastic properties and thermodynamic properties of the main binary phases Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca in Mg-Al-Ca-Sn alloy were determined from the first-principles calculation. The calculated lattice parameters are in good agreement with the experimental and literature values. The calculated heats of formation and cohesive energies show that Al_2Ca has the strongest alloying ability and structural stability. The densities of states(DOS), Mulliken electron occupation number, metallicity and charge density difference of these compounds are given. The elastic constants of Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca phases are calculated, and the bulk moduli, shear moduli, elastic moduli and Poisson ratio are derived. The calculations of thermodynamic properties show that the Gibbs free energies of Al_2Ca and Mg_2 Sn are lower than that of Mg_(17)Al_(12), which indicates that Al_2Ca and Mg_2 Sn are more stable than Mg_(17)Al_(12) phase. Hence, the heat resistance of Mg-Al-based alloys can be improved by adding Ca and Sn additions.展开更多
The electronic structures and mechanical properties of Al4Sr, Mg2Sr and Mg23Sr6 phases were determined by the use of first-principles calculations. The calculated heat of formation and cohesive energy indicate that Al...The electronic structures and mechanical properties of Al4Sr, Mg2Sr and Mg23Sr6 phases were determined by the use of first-principles calculations. The calculated heat of formation and cohesive energy indicate that Al4Sr has the strongest alloying ability as well as the highest structural stability. The elastic parameters were calculated, and then the bulk modulus, shear modulus, elastic modulus and Poisson ratio were derived. The ductility and plasticity were discussed. The results show that Al4Sr and Mg2Sr phases both are ductile, on the contrary, Mg23Sr6 is brittle, and among the three phases, Mg2Sr is a phase with the best plasticity.展开更多
The structural stability, electronic and elastic properties of Pd3-xRhxV alloys with L12 and D022 structures were investigated theoretically by the first-principles calculations. The results reveal that with the incre...The structural stability, electronic and elastic properties of Pd3-xRhxV alloys with L12 and D022 structures were investigated theoretically by the first-principles calculations. The results reveal that with the increase of Rh content, the unit cell volume of Pd3-xRhxV alloys with L12 and D022 structures decreases, and the structure of Pd3-xRhxV alloys tends to transform from D022 to L12. The elastic parameters such as elastic constants, bulk modulus, shear modulus, elastic modulus, and Poisson ratio, were calculated and discussed in details. Electronic structures were also computed to reveal the underlying mechanism for the stability and elastic properties.展开更多
The effect of Co substitution on magnetic properties of Ni-Mn-Sn shape memory alloy was revealed by first-principles calculations. Large magnetization difference in Ni-Mn-Sn alloy obtained by addition of Co arises fro...The effect of Co substitution on magnetic properties of Ni-Mn-Sn shape memory alloy was revealed by first-principles calculations. Large magnetization difference in Ni-Mn-Sn alloy obtained by addition of Co arises from enhancement of magnetization of austenite due to change of Mn-Mn interaction from anti-ferromagnetism to ferromagnetism. Total energy difference between paramagnetic and ferromagnetic austenite plays an important role in magnetic transition of Ni-Co-Mn-Sn. The altered Mn 3d states due to Co substitution give rise to difference in magnetic properties.展开更多
Localized corrosion of aluminum(Al)alloys,such as pitting corrosion,intergranular corrosion,and stress corrosion cracking is closely related to the micro-galvanic corrosion between the second phase and the Al matrix.U...Localized corrosion of aluminum(Al)alloys,such as pitting corrosion,intergranular corrosion,and stress corrosion cracking is closely related to the micro-galvanic corrosion between the second phase and the Al matrix.Using high-resolution transmission electron microscopy and first principles calculations,the factors that affect corrosion mechanisms of the second phase in Al alloys at micro-scale and atomic-scale were examined,including the composition and structure of second phase,pH of the environment,stress and adsorption behavior of adsorbates(such as Cl^(−),H_(2)O,OH−and O_(2)^(−).展开更多
The conformations for leucine (Leu) hydrated with one to three water molecules, Leu-(H2O)n (n=1-3), were carefully searched by considering the trial structures generated by all possible combinations of rotamers ...The conformations for leucine (Leu) hydrated with one to three water molecules, Leu-(H2O)n (n=1-3), were carefully searched by considering the trial structures generated by all possible combinations of rotamers of Leu combined with all likely hydration modes. The structures were optimized at the BHandHLYP/6-31+G^* level and the single point energies were calculated at the BHandHLYP/6-311++G^** level. Good correspondence between the conformations of Leu-(H2O)n and bare Leu is found, showing that the conformations of Leu-(H2O)n may be efficiently and reliably determined by the hydration of Leu conformers. The simulated IR spectra of canonical and zwitterionic conformers of Leu-(H2O)n are compared with the experimental result of Leu in aqueous solution. The IR spectrum of zwitterionic Leu- (H2O)3 provides the best description of the experiment. The result demonstrates that the IR spectrum of solute in solution may be simulated by the solute hydrated with an adequate number of water molecules in the gas phase.展开更多
Micro-alloying design of wrought magnesium(Mg) alloys is an important strategy to achieve high mechanical properties at a low cost. In the last two decades, significant progress has been made from both theory and expe...Micro-alloying design of wrought magnesium(Mg) alloys is an important strategy to achieve high mechanical properties at a low cost. In the last two decades, significant progress has been made from both theory and experiment. In the present review, we try to summarize recent advances in micro-alloying design of wrought Mg alloys from both theoretical and pragmatic perspectives, and provide fundamental data required for establishing the relationship between chemical composition and mechanical properties of Mg alloys. We start with theoretical attempts for understanding the mechanical properties of Mg alloys at different scales, by involving first principle calculations,molecular dynamics, cellular automata, and crystal plasticity. Then, the role of alloying elements is discussed for a series of promising Mg alloys such as Mg-Al, Mg-Zn, Mg-RE(rare-earth element), Mg-Sn, and Mg-Ca families.Potential challenges in the micro-alloying design of Mg alloys are highlighted at the end. The review is expected to provide helpful guidance for the intelligent design of novel wrought Mg alloys and inspire more innovative ideas in this field.展开更多
First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadi...First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadium phosphide compounds was calculated to assess their structural stability. The charge density distribution and densities of states of vanadium phosphides were discussed to study further their electronic structures. The results show that the structure of metal-rich compounds is considerably more stable than the phosphorus-rich compositions,and covalent bond exists between the V and P atoms of V3P,V2P,VP,VP2 and VP4.展开更多
A simple fast correlation attack is used to analysis the security of Bluetooth combiner in this paper. This attack solves the tradeoff between the length of the keystream and the computing complexity needed to recover...A simple fast correlation attack is used to analysis the security of Bluetooth combiner in this paper. This attack solves the tradeoff between the length of the keystream and the computing complexity needed to recover the secret key. We give the computing complexities of the attack algorithm according to different lengths of the known keystream. The result is less time-consuming than before. It is also shown that the secu-rity of the modified Bluetooth combiner by Hermelin and Nyberg is not significantly enhanced.展开更多
Based on the Huybrechts' linear-combination operator,effects of thermal lattice vibration on the effective potential of weak-coupling bipolaron in semiconductor quantum dots are studied by using the LLP variationa...Based on the Huybrechts' linear-combination operator,effects of thermal lattice vibration on the effective potential of weak-coupling bipolaron in semiconductor quantum dots are studied by using the LLP variational method and quantum statistical theory.The results show that the absolute value of the induced potential of the bipolaron increases with increasing the electron-phonon coupling strength,but decreases with increasing the temperature and the distance of electrons,respectively;the absolute value of the effective potential increases with increasing the radius of the quantum dot,electron-phonon coupling strength and the distance of electrons,respectively,but decreases with increasing the temperature;the temperature and electron-phonon interaction have the important influence on the formation and state properties of the bipolaron:the bipolarons in the bound state are closer and more stable when the electron-phonon coupling strength is larger or the temperature is lower;the confinement potential and coulomb repulsive potential between electrons are unfavorable to the formation of bipolarons in the bound state.展开更多
Magnetic tunnel junction with a large tunneling magnetoresistance has attracted great attention due to its importance in the spintronics applications.By performing extensive density functional theory calculations comb...Magnetic tunnel junction with a large tunneling magnetoresistance has attracted great attention due to its importance in the spintronics applications.By performing extensive density functional theory calculations combined with the nonequilibrium Green’s function method,we explore the spin-dependent transport properties of a magnetic tunnel junction,in which a non-polar SrTiO_(3) barrier layer is sandwiched between two Heusler alloy Co_(2)MnSi electrodes.Theoretical results clearly reveal that the near perfect spin-filtering effect appears in the parallel magnetization configuration.The transmission coefficient in the parallel magnetization configuration at the Fermi level is several orders of magnitude larger than that in the antiparallel magnetization configuration,resulting in a huge tunneling magnetoresistance(i.e.>10^(6)),which originates from the coherent spin-polarized tunneling,due to the half-metallic nature of Co_(2)MnSi electrodes and the significant spin-polarization of the interfacial Ti_(3)d orbital.展开更多
Graphite-like carbon nitride (g-C3N4) based heterostrutures has attracted intensive attention due to their prominent photocatalytic performance. Here, we explore the g-CaN4/SnS2 coupling effect on the electronic str...Graphite-like carbon nitride (g-C3N4) based heterostrutures has attracted intensive attention due to their prominent photocatalytic performance. Here, we explore the g-CaN4/SnS2 coupling effect on the electronic structures and optical absorption of the proposed g-CaN4/SnS2 heterostructure through performing extensive hybrid functional calculations. The obtained geometric structure, band structures, band edge positions and optical absorptions clearly reveal that the g-C3N4 monolayer weakly couples to SnS2 sheet, and forms a typical van der Waals heterojunction. The g-C3N4/SnS2 heterostructure can effectively harvest visible light, and its valence band maximum and conduction band minimum locate in energetically favorable positions for both water oxidation and reduction reactions. Remarkably, the charge transfer from the g-C3N4 monolayer to SnS2 sheet leads to the built-in interface polarized electric field, which is desirable for the photogenerated carrier separation. The built-in interface polarized electric field as well as the nice band edge alignment implys that the g-CaN4/SnS2 heterostructure is a promising g-CaN4 based water splitting photocatalyst with good performance.展开更多
The thermodynamic stability and lithiated/delithiated potentials of LiFexMn1-xPO4 were studied with density functional theorical calculations. The results show that the formation free energy of the LiFexMn1-xPO4 solid...The thermodynamic stability and lithiated/delithiated potentials of LiFexMn1-xPO4 were studied with density functional theorical calculations. The results show that the formation free energy of the LiFexMn1-xPO4 solid solution is slightly higher than that of the phase-separated mixture of LiFePO4 and LiMnPO4, and the two forms may co-exist in the actual LiFexMn1-xPO4 materials. The calculation manifests that the lithiated/delithiated potentials of LiFexMn1-xPO4 solid solutions vary via the Mn/Fe ratio and the spatial arrangements of the transition metal ions, and the result is used to explain the shape of capacity-voltage curves. Experimentally, we have synthesized the LiFexMn1-xPO4 materials by solid-phase reaction method. The existence of the LiFexMn1-xPO4 solid solution is thought to be responsible for the appearance of additional capacity-voltage plateau observed in the experiment.展开更多
By using nonequilibrium Green's function method and first-principles calculations, the electronic transport properties of doped C60 molecular devices were investigated. It is revealed that the C60 molecular devices s...By using nonequilibrium Green's function method and first-principles calculations, the electronic transport properties of doped C60 molecular devices were investigated. It is revealed that the C60 molecular devices show the metal behavior due to the interaction between the C60 molecule and the metal electrode. The current-voltage curve displays a linear behavior at low bias, and the currents have the relation of MI〉M3〉M4〉M2 when the bias voltage is lower than 0.6 V. Electronic transport properties are affected greatly by the doped atoms. Negative differential resistance is found in a certain bias range for C60 and C58BN molecular devices, but cannot be observed in C59B and C59N molecular devices. These unconventional effects can be used to design novel nanoelectronic devices.展开更多
基金Project supported by the National Key Laboratory Opening Funding of Advanced Composites in Special Environments in Harbin Institute of Technology,China
文摘The structural, electronic and elastic properties of common intermetallic compounds in FeTiCoNiVCrMnCuAI system high entropy alloy were investigated by the first principles calculation. The calculation results of formation enthalpy and cohesive energy show that FeTi, Fe2Ti, AlCrFe2, Co2Ti, AlMn2V and Mn2Ti phases may form in the formation process of the alloy. Further studies show that FeTi, FezTi, AlCrFe2, Co2Ti and AlMn2V phases with higher shear modulus and elastic modulus would be excellent strengthening phases in high entropy alloy and would improve the hardness of the alloy. In addition, the partial density of states was investigated for revealing the bonding mode, and the analyses on the strength of p-d hybridization also reveal the underlying mechanism for the elastic properties of these compounds.
基金Project(20131083) supported by the Doctoral Starting up Foundation of Liaoning Province,ClhinaProject(LT201304) supported by the Program for Liaoning Innovative Research Team in University,ChinaProject(2013201018) supported by the Key Technologies Research and Development Program of Liaoning Province,China
文摘The structural stability, electronic structures, elastic properties and thermodynamic properties of the main binary phases Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca in Mg-Al-Ca-Sn alloy were determined from the first-principles calculation. The calculated lattice parameters are in good agreement with the experimental and literature values. The calculated heats of formation and cohesive energies show that Al_2Ca has the strongest alloying ability and structural stability. The densities of states(DOS), Mulliken electron occupation number, metallicity and charge density difference of these compounds are given. The elastic constants of Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca phases are calculated, and the bulk moduli, shear moduli, elastic moduli and Poisson ratio are derived. The calculations of thermodynamic properties show that the Gibbs free energies of Al_2Ca and Mg_2 Sn are lower than that of Mg_(17)Al_(12), which indicates that Al_2Ca and Mg_2 Sn are more stable than Mg_(17)Al_(12) phase. Hence, the heat resistance of Mg-Al-based alloys can be improved by adding Ca and Sn additions.
基金Project (200805321032) supported by Doctoral Fund of Ministry of Education of ChinaProject (51071065) supported by the National Natural Science Foundation of ChinaProject (71075003) supported by the Science Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, China
文摘The electronic structures and mechanical properties of Al4Sr, Mg2Sr and Mg23Sr6 phases were determined by the use of first-principles calculations. The calculated heat of formation and cohesive energy indicate that Al4Sr has the strongest alloying ability as well as the highest structural stability. The elastic parameters were calculated, and then the bulk modulus, shear modulus, elastic modulus and Poisson ratio were derived. The ductility and plasticity were discussed. The results show that Al4Sr and Mg2Sr phases both are ductile, on the contrary, Mg23Sr6 is brittle, and among the three phases, Mg2Sr is a phase with the best plasticity.
基金Project (50861002) supported by the National Natural Science Foundation of ChinaProject (0991051) supported by the Natural Science Foundation of Guangxi Province, China+2 种基金Project (08JJ6001) supported by the Natural Science Foundation of Hunan Province, ChinaProject (KF0803) supported by Key Laboratory of Materials Design and Preparation Technology of Hunan Province, ChinaProject (X071117) supported by the Scientific Research Foundation of Guangxi University, China
文摘The structural stability, electronic and elastic properties of Pd3-xRhxV alloys with L12 and D022 structures were investigated theoretically by the first-principles calculations. The results reveal that with the increase of Rh content, the unit cell volume of Pd3-xRhxV alloys with L12 and D022 structures decreases, and the structure of Pd3-xRhxV alloys tends to transform from D022 to L12. The elastic parameters such as elastic constants, bulk modulus, shear modulus, elastic modulus, and Poisson ratio, were calculated and discussed in details. Electronic structures were also computed to reveal the underlying mechanism for the stability and elastic properties.
基金Project (1253-NCET-009) supported by Program for New Century Excellent Talents in Heilongjiang Provincial University,ChinaProject (1251G022) supported by Program for Youth Academic Backbone in Heilongjiang Provincial University,ChinaProjects (50901026,51301054) supported by the National Natural Science Foundation of China
文摘The effect of Co substitution on magnetic properties of Ni-Mn-Sn shape memory alloy was revealed by first-principles calculations. Large magnetization difference in Ni-Mn-Sn alloy obtained by addition of Co arises from enhancement of magnetization of austenite due to change of Mn-Mn interaction from anti-ferromagnetism to ferromagnetism. Total energy difference between paramagnetic and ferromagnetic austenite plays an important role in magnetic transition of Ni-Co-Mn-Sn. The altered Mn 3d states due to Co substitution give rise to difference in magnetic properties.
基金financial support from the National Natural Science Foundation of China (No. 52171077)。
文摘Localized corrosion of aluminum(Al)alloys,such as pitting corrosion,intergranular corrosion,and stress corrosion cracking is closely related to the micro-galvanic corrosion between the second phase and the Al matrix.Using high-resolution transmission electron microscopy and first principles calculations,the factors that affect corrosion mechanisms of the second phase in Al alloys at micro-scale and atomic-scale were examined,including the composition and structure of second phase,pH of the environment,stress and adsorption behavior of adsorbates(such as Cl^(−),H_(2)O,OH−and O_(2)^(−).
基金V. ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.11074233) the National Basic Research Program of China (No.2012CB215405), and the Specialized Research Fund for the Doctoral Program of Higher Education (No.20113402110038).
文摘The conformations for leucine (Leu) hydrated with one to three water molecules, Leu-(H2O)n (n=1-3), were carefully searched by considering the trial structures generated by all possible combinations of rotamers of Leu combined with all likely hydration modes. The structures were optimized at the BHandHLYP/6-31+G^* level and the single point energies were calculated at the BHandHLYP/6-311++G^** level. Good correspondence between the conformations of Leu-(H2O)n and bare Leu is found, showing that the conformations of Leu-(H2O)n may be efficiently and reliably determined by the hydration of Leu conformers. The simulated IR spectra of canonical and zwitterionic conformers of Leu-(H2O)n are compared with the experimental result of Leu in aqueous solution. The IR spectrum of zwitterionic Leu- (H2O)3 provides the best description of the experiment. The result demonstrates that the IR spectrum of solute in solution may be simulated by the solute hydrated with an adequate number of water molecules in the gas phase.
基金the financial supports from the National Natural Science Foundation of China (Nos. U1764253, U2037601, 52001037, 51971044, 52101126)the National Defense Basic Scientific Research Program of China, China Postdoctoral Science Foundation (No. 2021M700566)+3 种基金the Natural Science Foundation of Chongqing, China (No. cstc2019jcyjmsxm X0234)Chongqing Science and Technology Commission, China (No. cstc2017zdcyzdzx X0006)Chongqing Scientific and Technological Talents Program, China (No. KJXX2017002)Qinghai Science and Technology Program, China (No. 2018-GX-A1)。
文摘Micro-alloying design of wrought magnesium(Mg) alloys is an important strategy to achieve high mechanical properties at a low cost. In the last two decades, significant progress has been made from both theory and experiment. In the present review, we try to summarize recent advances in micro-alloying design of wrought Mg alloys from both theoretical and pragmatic perspectives, and provide fundamental data required for establishing the relationship between chemical composition and mechanical properties of Mg alloys. We start with theoretical attempts for understanding the mechanical properties of Mg alloys at different scales, by involving first principle calculations,molecular dynamics, cellular automata, and crystal plasticity. Then, the role of alloying elements is discussed for a series of promising Mg alloys such as Mg-Al, Mg-Zn, Mg-RE(rare-earth element), Mg-Sn, and Mg-Ca families.Potential challenges in the micro-alloying design of Mg alloys are highlighted at the end. The review is expected to provide helpful guidance for the intelligent design of novel wrought Mg alloys and inspire more innovative ideas in this field.
基金Project(20871101)supported by the National Natural Science Foundation of ChinaProject(09C945)supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadium phosphide compounds was calculated to assess their structural stability. The charge density distribution and densities of states of vanadium phosphides were discussed to study further their electronic structures. The results show that the structure of metal-rich compounds is considerably more stable than the phosphorus-rich compositions,and covalent bond exists between the V and P atoms of V3P,V2P,VP,VP2 and VP4.
基金Supported by the National Key Foundation Research "973" project (No.G1999035802) and the National Natural Science Foundation of China (No.60273027).
文摘A simple fast correlation attack is used to analysis the security of Bluetooth combiner in this paper. This attack solves the tradeoff between the length of the keystream and the computing complexity needed to recover the secret key. We give the computing complexities of the attack algorithm according to different lengths of the known keystream. The result is less time-consuming than before. It is also shown that the secu-rity of the modified Bluetooth combiner by Hermelin and Nyberg is not significantly enhanced.
基金Supported by the Items of Institution of Higher Education Scientific Research of Inner Mongolia under Grant No. NJ101116
文摘Based on the Huybrechts' linear-combination operator,effects of thermal lattice vibration on the effective potential of weak-coupling bipolaron in semiconductor quantum dots are studied by using the LLP variational method and quantum statistical theory.The results show that the absolute value of the induced potential of the bipolaron increases with increasing the electron-phonon coupling strength,but decreases with increasing the temperature and the distance of electrons,respectively;the absolute value of the effective potential increases with increasing the radius of the quantum dot,electron-phonon coupling strength and the distance of electrons,respectively,but decreases with increasing the temperature;the temperature and electron-phonon interaction have the important influence on the formation and state properties of the bipolaron:the bipolarons in the bound state are closer and more stable when the electron-phonon coupling strength is larger or the temperature is lower;the confinement potential and coulomb repulsive potential between electrons are unfavorable to the formation of bipolarons in the bound state.
基金partially supported by the National Natural Science Foundation of China(No.21873088 and No.11634011)the Natural Science Foundation of the Anhui Higher Education Institutions(No.KJ2010A061 and No.KJ2016A144)。
文摘Magnetic tunnel junction with a large tunneling magnetoresistance has attracted great attention due to its importance in the spintronics applications.By performing extensive density functional theory calculations combined with the nonequilibrium Green’s function method,we explore the spin-dependent transport properties of a magnetic tunnel junction,in which a non-polar SrTiO_(3) barrier layer is sandwiched between two Heusler alloy Co_(2)MnSi electrodes.Theoretical results clearly reveal that the near perfect spin-filtering effect appears in the parallel magnetization configuration.The transmission coefficient in the parallel magnetization configuration at the Fermi level is several orders of magnitude larger than that in the antiparallel magnetization configuration,resulting in a huge tunneling magnetoresistance(i.e.>10^(6)),which originates from the coherent spin-polarized tunneling,due to the half-metallic nature of Co_(2)MnSi electrodes and the significant spin-polarization of the interfacial Ti_(3)d orbital.
基金This work is supported by the National Key Basic Research Program (No.2014CB921101), the National Natural Science Foundation of China (No.21503149, No.21273208, and No.21473168), the PhD foundation of Tianjin Normal University (No.52XBI408), and the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology. Jing Huang thanks the Natural Science Foundation of the Anhui Higher Education Institutions (No.KJ2016A144) and the Natural Science Foundation of Anhui Province (No.1408085QB26). Computational resources have been provided by CAS, Shanghai and USTC Supercomputer Centers.
文摘Graphite-like carbon nitride (g-C3N4) based heterostrutures has attracted intensive attention due to their prominent photocatalytic performance. Here, we explore the g-CaN4/SnS2 coupling effect on the electronic structures and optical absorption of the proposed g-CaN4/SnS2 heterostructure through performing extensive hybrid functional calculations. The obtained geometric structure, band structures, band edge positions and optical absorptions clearly reveal that the g-C3N4 monolayer weakly couples to SnS2 sheet, and forms a typical van der Waals heterojunction. The g-C3N4/SnS2 heterostructure can effectively harvest visible light, and its valence band maximum and conduction band minimum locate in energetically favorable positions for both water oxidation and reduction reactions. Remarkably, the charge transfer from the g-C3N4 monolayer to SnS2 sheet leads to the built-in interface polarized electric field, which is desirable for the photogenerated carrier separation. The built-in interface polarized electric field as well as the nice band edge alignment implys that the g-CaN4/SnS2 heterostructure is a promising g-CaN4 based water splitting photocatalyst with good performance.
基金supported by the Science and Technology Foundation of Jiangsu Province(BK20151237)the Special Nano-technology of Suzhou(ZXG2013004)+2 种基金USTC-NSRL Association Fundingthe Collaborative Innovation Centre of Suzhou Nano Science and Technologythe Supercomputation Center of USTC
文摘The thermodynamic stability and lithiated/delithiated potentials of LiFexMn1-xPO4 were studied with density functional theorical calculations. The results show that the formation free energy of the LiFexMn1-xPO4 solid solution is slightly higher than that of the phase-separated mixture of LiFePO4 and LiMnPO4, and the two forms may co-exist in the actual LiFexMn1-xPO4 materials. The calculation manifests that the lithiated/delithiated potentials of LiFexMn1-xPO4 solid solutions vary via the Mn/Fe ratio and the spatial arrangements of the transition metal ions, and the result is used to explain the shape of capacity-voltage curves. Experimentally, we have synthesized the LiFexMn1-xPO4 materials by solid-phase reaction method. The existence of the LiFexMn1-xPO4 solid solution is thought to be responsible for the appearance of additional capacity-voltage plateau observed in the experiment.
基金Project(07JJ3102) supported by the Natural Science Foundation of Hunan Province, ChinaProject(1343-74236000006) supported by the Graduate Foundation of Hunan Province, ChinaProject(11MY20) supported by the Mittal Entrepreneurship Program of China
文摘By using nonequilibrium Green's function method and first-principles calculations, the electronic transport properties of doped C60 molecular devices were investigated. It is revealed that the C60 molecular devices show the metal behavior due to the interaction between the C60 molecule and the metal electrode. The current-voltage curve displays a linear behavior at low bias, and the currents have the relation of MI〉M3〉M4〉M2 when the bias voltage is lower than 0.6 V. Electronic transport properties are affected greatly by the doped atoms. Negative differential resistance is found in a certain bias range for C60 and C58BN molecular devices, but cannot be observed in C59B and C59N molecular devices. These unconventional effects can be used to design novel nanoelectronic devices.