In this study, the O3/BAC/TiO2 catalytic method was used to treat the phenolic wastewater. During the experiments the effects of initial phenol concentration, ozone concentration, pH value, catalyst and other conditio...In this study, the O3/BAC/TiO2 catalytic method was used to treat the phenolic wastewater. During the experiments the effects of initial phenol concentration, ozone concentration, pH value, catalyst and other conditions on the phenol removal rate were investigated. The test results showed that when the phenol concentration was 0.1 g/L, the ozone-containing air flow rate was 0.05 m3/b, the ozone concentration was 3.58 mg/L, the pH value was 7.5, and the treating time was 30 minutes, the phenol removal rate reached 99%, with the COD removal rate equating to 55%. The property of treated wastewater could comply with the first-grade effluent specified in "Comprehensive Wastewater Discharge Standard" (GB8978--1996).展开更多
A full-scale experimental study of treating mustard wastewater by the integrated bioreactor with designed scale of 1 000 m3/d is conducted combined with a demonstration project. The systematical researches on the effi...A full-scale experimental study of treating mustard wastewater by the integrated bioreactor with designed scale of 1 000 m3/d is conducted combined with a demonstration project. The systematical researches on the efficiency of combined operation conditions of anaerobic-aerobic and anaerobic-aerobic-flocculation as well as chemical phosphorus removal of hypersaline mustard wastewater are conducted. The optimal operation condition and parameters in pretreatment of mustard wastewater in winter (the water temperature ranges 8-15 ~C) are determined: the anaerobic load is 3.0 kg (COD)/(m3.d), the average COD and phosphate concentration of the inflow are respectively 3 883 mg/L and 35.53 mg/L and the dosage of flocculent (PAC) is 400 mg/L. The anaerobic-aerobic-flocculation combined operation condition and postpositive phosphorous removal with ferrous sulfate are employed. After treatment, the COD of the effluent is 470 mg/L and the average phosphate concentration is 5.09 mg/L. The effluent could achieve the third-level of Integrated Wastewater Discharge Standard (GB 8978--1996).展开更多
文摘In this study, the O3/BAC/TiO2 catalytic method was used to treat the phenolic wastewater. During the experiments the effects of initial phenol concentration, ozone concentration, pH value, catalyst and other conditions on the phenol removal rate were investigated. The test results showed that when the phenol concentration was 0.1 g/L, the ozone-containing air flow rate was 0.05 m3/b, the ozone concentration was 3.58 mg/L, the pH value was 7.5, and the treating time was 30 minutes, the phenol removal rate reached 99%, with the COD removal rate equating to 55%. The property of treated wastewater could comply with the first-grade effluent specified in "Comprehensive Wastewater Discharge Standard" (GB8978--1996).
基金Project(20090191120036) supported by the Fund of Doctoral Program of Ministry of Education,China
文摘A full-scale experimental study of treating mustard wastewater by the integrated bioreactor with designed scale of 1 000 m3/d is conducted combined with a demonstration project. The systematical researches on the efficiency of combined operation conditions of anaerobic-aerobic and anaerobic-aerobic-flocculation as well as chemical phosphorus removal of hypersaline mustard wastewater are conducted. The optimal operation condition and parameters in pretreatment of mustard wastewater in winter (the water temperature ranges 8-15 ~C) are determined: the anaerobic load is 3.0 kg (COD)/(m3.d), the average COD and phosphate concentration of the inflow are respectively 3 883 mg/L and 35.53 mg/L and the dosage of flocculent (PAC) is 400 mg/L. The anaerobic-aerobic-flocculation combined operation condition and postpositive phosphorous removal with ferrous sulfate are employed. After treatment, the COD of the effluent is 470 mg/L and the average phosphate concentration is 5.09 mg/L. The effluent could achieve the third-level of Integrated Wastewater Discharge Standard (GB 8978--1996).