The comparison theorems of solutions for BSDEs in fully coupled forward-backward stochastic differential equations (FBSDEs) are studied in this paper, here in the fully coupled FBSDEs the forward SDEs are the same str...The comparison theorems of solutions for BSDEs in fully coupled forward-backward stochastic differential equations (FBSDEs) are studied in this paper, here in the fully coupled FBSDEs the forward SDEs are the same structure.展开更多
We consider a reaction-diffusion model which describes the spatial Wolbachia spread dynamics for a mixed population of infected and uninfected mosquitoes. By using linearization method, comparison principle and Leray-...We consider a reaction-diffusion model which describes the spatial Wolbachia spread dynamics for a mixed population of infected and uninfected mosquitoes. By using linearization method, comparison principle and Leray-Schauder degree theory, we investigate the influence of diffusion on the Wolbachia infection dynamics.After identifying the system parameter regions in which diffusion alters the local stability of constant steadystates, we find sufficient conditions under which the system possesses inhomogeneous steady-states. Surprisingly,our mathematical analysis, with the help of numerical simulations, indicates that diffusion is able to lower the threshold value of the infection frequency over which Wolbachia can invade the whole population.展开更多
文摘The comparison theorems of solutions for BSDEs in fully coupled forward-backward stochastic differential equations (FBSDEs) are studied in this paper, here in the fully coupled FBSDEs the forward SDEs are the same structure.
基金supported by National Natural Science Foundation of China (Grant Nos. 11471085, 91230104 and 11301103)Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT1226)+1 种基金Program for Yangcheng Scholars in Guangzhou (Grant No. 12A003S)Guangdong Innovative Research Team Program (Grant No. 2011S009)
文摘We consider a reaction-diffusion model which describes the spatial Wolbachia spread dynamics for a mixed population of infected and uninfected mosquitoes. By using linearization method, comparison principle and Leray-Schauder degree theory, we investigate the influence of diffusion on the Wolbachia infection dynamics.After identifying the system parameter regions in which diffusion alters the local stability of constant steadystates, we find sufficient conditions under which the system possesses inhomogeneous steady-states. Surprisingly,our mathematical analysis, with the help of numerical simulations, indicates that diffusion is able to lower the threshold value of the infection frequency over which Wolbachia can invade the whole population.