This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determi...This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determined through the extremum features of stress−strain curve.Subsequently,the model predictions were compared with experimental results of marble samples.It is found that when the treatment temperature rises,the coupling damage evolution curve shows an S-shape and the slope of ascending branch gradually decreases during the coupling damage evolution process.At a constant temperature,confining pressure can suppress the expansion of micro-fractures.As the confining pressure increases the rock exhibits ductility characteristics,and the shape of coupling damage curve changes from an S-shape into a quasi-parabolic shape.This model can well characterize the influence of high temperature on the mechanical properties of deep rock and its brittleness-ductility transition characteristics under confining pressure.Also,it is suitable for sandstone and granite,especially in predicting the pre-peak stage and peak stress of stress−strain curve under the coupling action of confining pressure and high temperature.The relevant results can provide a reference for further research on the constitutive relationship of rock-like materials and their engineering applications.展开更多
A new kind offl biomedical titanium alloy, Ti-35Nb-4Sn-6Mo-9Zr, composed of non-toxic elements Nb, Mo, Zr and Sn with lower elastic modulus and higher strength was designed based on d-electron alloy design theory and ...A new kind offl biomedical titanium alloy, Ti-35Nb-4Sn-6Mo-9Zr, composed of non-toxic elements Nb, Mo, Zr and Sn with lower elastic modulus and higher strength was designed based on d-electron alloy design theory and JMatPro software using orthogonal experiment. The microstructure and basic mechanical properties of designed alloy were investigated. The results show that the alloy is composed of single fl equiaxed grains after solution treatment at 800 ~C. Compared with Ti-6A1-4V, the mechanical properties of the designed alloy are more excellent: E=65 GPa, σb=834 MPa, σ0.2=802 MPa, and σ=11%, which is expected to become a promising new type implanted material. The research approach adopted can reduce the experimental time and cost effectively, and get the ideal experimental results.展开更多
The structural, electronic and elastic properties of common intermetallic compounds in FeTiCoNiVCrMnCuAI system high entropy alloy were investigated by the first principles calculation. The calculation results of form...The structural, electronic and elastic properties of common intermetallic compounds in FeTiCoNiVCrMnCuAI system high entropy alloy were investigated by the first principles calculation. The calculation results of formation enthalpy and cohesive energy show that FeTi, Fe2Ti, AlCrFe2, Co2Ti, AlMn2V and Mn2Ti phases may form in the formation process of the alloy. Further studies show that FeTi, FezTi, AlCrFe2, Co2Ti and AlMn2V phases with higher shear modulus and elastic modulus would be excellent strengthening phases in high entropy alloy and would improve the hardness of the alloy. In addition, the partial density of states was investigated for revealing the bonding mode, and the analyses on the strength of p-d hybridization also reveal the underlying mechanism for the elastic properties of these compounds.展开更多
The structural stability, electronic structures, elastic properties and thermodynamic properties of the main binary phases Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca in Mg-Al-Ca-Sn alloy were determined from the ...The structural stability, electronic structures, elastic properties and thermodynamic properties of the main binary phases Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca in Mg-Al-Ca-Sn alloy were determined from the first-principles calculation. The calculated lattice parameters are in good agreement with the experimental and literature values. The calculated heats of formation and cohesive energies show that Al_2Ca has the strongest alloying ability and structural stability. The densities of states(DOS), Mulliken electron occupation number, metallicity and charge density difference of these compounds are given. The elastic constants of Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca phases are calculated, and the bulk moduli, shear moduli, elastic moduli and Poisson ratio are derived. The calculations of thermodynamic properties show that the Gibbs free energies of Al_2Ca and Mg_2 Sn are lower than that of Mg_(17)Al_(12), which indicates that Al_2Ca and Mg_2 Sn are more stable than Mg_(17)Al_(12) phase. Hence, the heat resistance of Mg-Al-based alloys can be improved by adding Ca and Sn additions.展开更多
The electronic structures and mechanical properties of Al4Sr, Mg2Sr and Mg23Sr6 phases were determined by the use of first-principles calculations. The calculated heat of formation and cohesive energy indicate that Al...The electronic structures and mechanical properties of Al4Sr, Mg2Sr and Mg23Sr6 phases were determined by the use of first-principles calculations. The calculated heat of formation and cohesive energy indicate that Al4Sr has the strongest alloying ability as well as the highest structural stability. The elastic parameters were calculated, and then the bulk modulus, shear modulus, elastic modulus and Poisson ratio were derived. The ductility and plasticity were discussed. The results show that Al4Sr and Mg2Sr phases both are ductile, on the contrary, Mg23Sr6 is brittle, and among the three phases, Mg2Sr is a phase with the best plasticity.展开更多
The structural stability, electronic and elastic properties of Pd3-xRhxV alloys with L12 and D022 structures were investigated theoretically by the first-principles calculations. The results reveal that with the incre...The structural stability, electronic and elastic properties of Pd3-xRhxV alloys with L12 and D022 structures were investigated theoretically by the first-principles calculations. The results reveal that with the increase of Rh content, the unit cell volume of Pd3-xRhxV alloys with L12 and D022 structures decreases, and the structure of Pd3-xRhxV alloys tends to transform from D022 to L12. The elastic parameters such as elastic constants, bulk modulus, shear modulus, elastic modulus, and Poisson ratio, were calculated and discussed in details. Electronic structures were also computed to reveal the underlying mechanism for the stability and elastic properties.展开更多
The effect of Co substitution on magnetic properties of Ni-Mn-Sn shape memory alloy was revealed by first-principles calculations. Large magnetization difference in Ni-Mn-Sn alloy obtained by addition of Co arises fro...The effect of Co substitution on magnetic properties of Ni-Mn-Sn shape memory alloy was revealed by first-principles calculations. Large magnetization difference in Ni-Mn-Sn alloy obtained by addition of Co arises from enhancement of magnetization of austenite due to change of Mn-Mn interaction from anti-ferromagnetism to ferromagnetism. Total energy difference between paramagnetic and ferromagnetic austenite plays an important role in magnetic transition of Ni-Co-Mn-Sn. The altered Mn 3d states due to Co substitution give rise to difference in magnetic properties.展开更多
To date,the Three Gorges Project is the largest hydro junction in the world.It is the key project for the integrated water resource management and development of the Changjiang River.The technology of the project,with...To date,the Three Gorges Project is the largest hydro junction in the world.It is the key project for the integrated water resource management and development of the Changjiang River.The technology of the project,with its huge scale and comprehensive benefits,is extremely complicated,and the design difficulty is greater than that of any other hydro project in the world.A series of new design theories and methods have been proposed and applied in the design and research process.Many key technological problems regarding hydraulic structures have been overcome,such as a gravity dam with multi-layer large discharge orifices,a hydropower station of giant generating units,and a giant continual multi-step ship lock with a high water head.展开更多
Localized corrosion of aluminum(Al)alloys,such as pitting corrosion,intergranular corrosion,and stress corrosion cracking is closely related to the micro-galvanic corrosion between the second phase and the Al matrix.U...Localized corrosion of aluminum(Al)alloys,such as pitting corrosion,intergranular corrosion,and stress corrosion cracking is closely related to the micro-galvanic corrosion between the second phase and the Al matrix.Using high-resolution transmission electron microscopy and first principles calculations,the factors that affect corrosion mechanisms of the second phase in Al alloys at micro-scale and atomic-scale were examined,including the composition and structure of second phase,pH of the environment,stress and adsorption behavior of adsorbates(such as Cl^(−),H_(2)O,OH−and O_(2)^(−).展开更多
The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attenti...The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attention,and substantial advances have been made in this research field in recent years.In this study,we summarize our progress in the rational design and construction of highly efficient catalysts for CO_(2) hydrogenation to methanol,lower olefins,aromatics,and gasolineand jet fuel-range hydrocarbons.The structure‐performance relationship,nature of the active sites,and mechanism of the reactions occurring over these catalysts are explored by combining computational and experimental evidence.The results of this study will promote further fundamental studies and industrial applications of heterogeneous catalysts for CO_(2) hydrogenation to produce bulk chemicals and liquid fuels.展开更多
The conformations for leucine (Leu) hydrated with one to three water molecules, Leu-(H2O)n (n=1-3), were carefully searched by considering the trial structures generated by all possible combinations of rotamers ...The conformations for leucine (Leu) hydrated with one to three water molecules, Leu-(H2O)n (n=1-3), were carefully searched by considering the trial structures generated by all possible combinations of rotamers of Leu combined with all likely hydration modes. The structures were optimized at the BHandHLYP/6-31+G^* level and the single point energies were calculated at the BHandHLYP/6-311++G^** level. Good correspondence between the conformations of Leu-(H2O)n and bare Leu is found, showing that the conformations of Leu-(H2O)n may be efficiently and reliably determined by the hydration of Leu conformers. The simulated IR spectra of canonical and zwitterionic conformers of Leu-(H2O)n are compared with the experimental result of Leu in aqueous solution. The IR spectrum of zwitterionic Leu- (H2O)3 provides the best description of the experiment. The result demonstrates that the IR spectrum of solute in solution may be simulated by the solute hydrated with an adequate number of water molecules in the gas phase.展开更多
This paper discusses the progress of computer integrated processing (CIPS) of coal-preparation and then preserits an intelligence controlled production-process, device-maintenance and production-management system of...This paper discusses the progress of computer integrated processing (CIPS) of coal-preparation and then preserits an intelligence controlled production-process, device-maintenance and production-management system of coal- preparation based on multi-agents (IICMMS-CP). The construction of the IICMMS-CP, the distributed network control system based on live intelligence control stations and the strategy of implementing distributed intelligence control system are studied in order to overcome the disadvantages brought about by the wide use of the PLC system by coaipreparation plants. The software frame, based on a Multi-Agent Intelligence Control and Maintenance Management integrated system, is studied and the implemention methods of IICMMS-CP are discussed. The characteristics of distributed architecture, cooperation and parallel computing meet the needs of integrated control of coal-preparation plants with large-scale spatial production distribution, densely-related processes and complex systems. Its application further improves the reliability and precision of process control, accuracy of fault identification and intelligence of production adjustment, establishes a technical basis for system integration and flexible production. The main function of the system has been tested in a coal-preparation plant to good effect in stabilizing product quality, improving efficiency and reducing consumption.展开更多
By means of an improved ligand-field theory, the "pure electronic" PS and the PS due to EPI of R line of MgO: V^2+ have been calculated, respectively. The calculated results are in very good agreement with the exp...By means of an improved ligand-field theory, the "pure electronic" PS and the PS due to EPI of R line of MgO: V^2+ have been calculated, respectively. The calculated results are in very good agreement with the experimental data. The behaviors of the pure electronic PS of R line of MgO:V^2+ and the PS of its R line due to EPI are different. It is the combined effect of them that gives rise to the total PS of R line, which has satisfactorily explained the experimental results. The mixing-degree of |t2^2(^3T1)e^4T2〉 and |t2^3 ^2E〉 in the wavefunetion of R level and its variation with pressure have been calculated and analyzed. The comparison between the feature of R-line PS of MgO:V^2+ and that of MgO:Cr^3+ has been made.展开更多
Micro-alloying design of wrought magnesium(Mg) alloys is an important strategy to achieve high mechanical properties at a low cost. In the last two decades, significant progress has been made from both theory and expe...Micro-alloying design of wrought magnesium(Mg) alloys is an important strategy to achieve high mechanical properties at a low cost. In the last two decades, significant progress has been made from both theory and experiment. In the present review, we try to summarize recent advances in micro-alloying design of wrought Mg alloys from both theoretical and pragmatic perspectives, and provide fundamental data required for establishing the relationship between chemical composition and mechanical properties of Mg alloys. We start with theoretical attempts for understanding the mechanical properties of Mg alloys at different scales, by involving first principle calculations,molecular dynamics, cellular automata, and crystal plasticity. Then, the role of alloying elements is discussed for a series of promising Mg alloys such as Mg-Al, Mg-Zn, Mg-RE(rare-earth element), Mg-Sn, and Mg-Ca families.Potential challenges in the micro-alloying design of Mg alloys are highlighted at the end. The review is expected to provide helpful guidance for the intelligent design of novel wrought Mg alloys and inspire more innovative ideas in this field.展开更多
First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadi...First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadium phosphide compounds was calculated to assess their structural stability. The charge density distribution and densities of states of vanadium phosphides were discussed to study further their electronic structures. The results show that the structure of metal-rich compounds is considerably more stable than the phosphorus-rich compositions,and covalent bond exists between the V and P atoms of V3P,V2P,VP,VP2 and VP4.展开更多
This paper presents an analysis on and experimental comparison of several typical fast algorithms for discrete wavelet transform (DWT) and their implementation in image compression, particularly the Mallat algorithm, ...This paper presents an analysis on and experimental comparison of several typical fast algorithms for discrete wavelet transform (DWT) and their implementation in image compression, particularly the Mallat algorithm, FFT-based algorithm, Short- length based algorithm and Lifting algorithm. The principles, structures and computational complexity of these algorithms are explored in details respectively. The results of the experiments for comparison are consistent to those simulated by MATLAB. It is found that there are limitations in the implementation of DWT. Some algorithms are workable only for special wavelet transform, lacking in generality. Above all, the speed of wavelet transform, as the governing element to the speed of image processing, is in fact the retarding factor for real-time image processing.展开更多
基金Project(11272119)supported by the National Natural Science Foundation of China。
文摘This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determined through the extremum features of stress−strain curve.Subsequently,the model predictions were compared with experimental results of marble samples.It is found that when the treatment temperature rises,the coupling damage evolution curve shows an S-shape and the slope of ascending branch gradually decreases during the coupling damage evolution process.At a constant temperature,confining pressure can suppress the expansion of micro-fractures.As the confining pressure increases the rock exhibits ductility characteristics,and the shape of coupling damage curve changes from an S-shape into a quasi-parabolic shape.This model can well characterize the influence of high temperature on the mechanical properties of deep rock and its brittleness-ductility transition characteristics under confining pressure.Also,it is suitable for sandstone and granite,especially in predicting the pre-peak stage and peak stress of stress−strain curve under the coupling action of confining pressure and high temperature.The relevant results can provide a reference for further research on the constitutive relationship of rock-like materials and their engineering applications.
基金Project(BE2011778)supported by Science and Technology Support Program of Jiangsu Province,ChinaProject(20133069014)supported by Aeronautical Science Foundation of China
文摘A new kind offl biomedical titanium alloy, Ti-35Nb-4Sn-6Mo-9Zr, composed of non-toxic elements Nb, Mo, Zr and Sn with lower elastic modulus and higher strength was designed based on d-electron alloy design theory and JMatPro software using orthogonal experiment. The microstructure and basic mechanical properties of designed alloy were investigated. The results show that the alloy is composed of single fl equiaxed grains after solution treatment at 800 ~C. Compared with Ti-6A1-4V, the mechanical properties of the designed alloy are more excellent: E=65 GPa, σb=834 MPa, σ0.2=802 MPa, and σ=11%, which is expected to become a promising new type implanted material. The research approach adopted can reduce the experimental time and cost effectively, and get the ideal experimental results.
基金Project supported by the National Key Laboratory Opening Funding of Advanced Composites in Special Environments in Harbin Institute of Technology,China
文摘The structural, electronic and elastic properties of common intermetallic compounds in FeTiCoNiVCrMnCuAI system high entropy alloy were investigated by the first principles calculation. The calculation results of formation enthalpy and cohesive energy show that FeTi, Fe2Ti, AlCrFe2, Co2Ti, AlMn2V and Mn2Ti phases may form in the formation process of the alloy. Further studies show that FeTi, FezTi, AlCrFe2, Co2Ti and AlMn2V phases with higher shear modulus and elastic modulus would be excellent strengthening phases in high entropy alloy and would improve the hardness of the alloy. In addition, the partial density of states was investigated for revealing the bonding mode, and the analyses on the strength of p-d hybridization also reveal the underlying mechanism for the elastic properties of these compounds.
基金Project(20131083) supported by the Doctoral Starting up Foundation of Liaoning Province,ClhinaProject(LT201304) supported by the Program for Liaoning Innovative Research Team in University,ChinaProject(2013201018) supported by the Key Technologies Research and Development Program of Liaoning Province,China
文摘The structural stability, electronic structures, elastic properties and thermodynamic properties of the main binary phases Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca in Mg-Al-Ca-Sn alloy were determined from the first-principles calculation. The calculated lattice parameters are in good agreement with the experimental and literature values. The calculated heats of formation and cohesive energies show that Al_2Ca has the strongest alloying ability and structural stability. The densities of states(DOS), Mulliken electron occupation number, metallicity and charge density difference of these compounds are given. The elastic constants of Mg_(17)Al_(12), Al_2Ca, Mg_2 Sn and Mg_2 Ca phases are calculated, and the bulk moduli, shear moduli, elastic moduli and Poisson ratio are derived. The calculations of thermodynamic properties show that the Gibbs free energies of Al_2Ca and Mg_2 Sn are lower than that of Mg_(17)Al_(12), which indicates that Al_2Ca and Mg_2 Sn are more stable than Mg_(17)Al_(12) phase. Hence, the heat resistance of Mg-Al-based alloys can be improved by adding Ca and Sn additions.
基金Project (200805321032) supported by Doctoral Fund of Ministry of Education of ChinaProject (51071065) supported by the National Natural Science Foundation of ChinaProject (71075003) supported by the Science Fund of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, China
文摘The electronic structures and mechanical properties of Al4Sr, Mg2Sr and Mg23Sr6 phases were determined by the use of first-principles calculations. The calculated heat of formation and cohesive energy indicate that Al4Sr has the strongest alloying ability as well as the highest structural stability. The elastic parameters were calculated, and then the bulk modulus, shear modulus, elastic modulus and Poisson ratio were derived. The ductility and plasticity were discussed. The results show that Al4Sr and Mg2Sr phases both are ductile, on the contrary, Mg23Sr6 is brittle, and among the three phases, Mg2Sr is a phase with the best plasticity.
基金Project (50861002) supported by the National Natural Science Foundation of ChinaProject (0991051) supported by the Natural Science Foundation of Guangxi Province, China+2 种基金Project (08JJ6001) supported by the Natural Science Foundation of Hunan Province, ChinaProject (KF0803) supported by Key Laboratory of Materials Design and Preparation Technology of Hunan Province, ChinaProject (X071117) supported by the Scientific Research Foundation of Guangxi University, China
文摘The structural stability, electronic and elastic properties of Pd3-xRhxV alloys with L12 and D022 structures were investigated theoretically by the first-principles calculations. The results reveal that with the increase of Rh content, the unit cell volume of Pd3-xRhxV alloys with L12 and D022 structures decreases, and the structure of Pd3-xRhxV alloys tends to transform from D022 to L12. The elastic parameters such as elastic constants, bulk modulus, shear modulus, elastic modulus, and Poisson ratio, were calculated and discussed in details. Electronic structures were also computed to reveal the underlying mechanism for the stability and elastic properties.
基金Project (1253-NCET-009) supported by Program for New Century Excellent Talents in Heilongjiang Provincial University,ChinaProject (1251G022) supported by Program for Youth Academic Backbone in Heilongjiang Provincial University,ChinaProjects (50901026,51301054) supported by the National Natural Science Foundation of China
文摘The effect of Co substitution on magnetic properties of Ni-Mn-Sn shape memory alloy was revealed by first-principles calculations. Large magnetization difference in Ni-Mn-Sn alloy obtained by addition of Co arises from enhancement of magnetization of austenite due to change of Mn-Mn interaction from anti-ferromagnetism to ferromagnetism. Total energy difference between paramagnetic and ferromagnetic austenite plays an important role in magnetic transition of Ni-Co-Mn-Sn. The altered Mn 3d states due to Co substitution give rise to difference in magnetic properties.
文摘To date,the Three Gorges Project is the largest hydro junction in the world.It is the key project for the integrated water resource management and development of the Changjiang River.The technology of the project,with its huge scale and comprehensive benefits,is extremely complicated,and the design difficulty is greater than that of any other hydro project in the world.A series of new design theories and methods have been proposed and applied in the design and research process.Many key technological problems regarding hydraulic structures have been overcome,such as a gravity dam with multi-layer large discharge orifices,a hydropower station of giant generating units,and a giant continual multi-step ship lock with a high water head.
基金financial support from the National Natural Science Foundation of China (No. 52171077)。
文摘Localized corrosion of aluminum(Al)alloys,such as pitting corrosion,intergranular corrosion,and stress corrosion cracking is closely related to the micro-galvanic corrosion between the second phase and the Al matrix.Using high-resolution transmission electron microscopy and first principles calculations,the factors that affect corrosion mechanisms of the second phase in Al alloys at micro-scale and atomic-scale were examined,including the composition and structure of second phase,pH of the environment,stress and adsorption behavior of adsorbates(such as Cl^(−),H_(2)O,OH−and O_(2)^(−).
文摘The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attention,and substantial advances have been made in this research field in recent years.In this study,we summarize our progress in the rational design and construction of highly efficient catalysts for CO_(2) hydrogenation to methanol,lower olefins,aromatics,and gasolineand jet fuel-range hydrocarbons.The structure‐performance relationship,nature of the active sites,and mechanism of the reactions occurring over these catalysts are explored by combining computational and experimental evidence.The results of this study will promote further fundamental studies and industrial applications of heterogeneous catalysts for CO_(2) hydrogenation to produce bulk chemicals and liquid fuels.
基金V. ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.11074233) the National Basic Research Program of China (No.2012CB215405), and the Specialized Research Fund for the Doctoral Program of Higher Education (No.20113402110038).
文摘The conformations for leucine (Leu) hydrated with one to three water molecules, Leu-(H2O)n (n=1-3), were carefully searched by considering the trial structures generated by all possible combinations of rotamers of Leu combined with all likely hydration modes. The structures were optimized at the BHandHLYP/6-31+G^* level and the single point energies were calculated at the BHandHLYP/6-311++G^** level. Good correspondence between the conformations of Leu-(H2O)n and bare Leu is found, showing that the conformations of Leu-(H2O)n may be efficiently and reliably determined by the hydration of Leu conformers. The simulated IR spectra of canonical and zwitterionic conformers of Leu-(H2O)n are compared with the experimental result of Leu in aqueous solution. The IR spectrum of zwitterionic Leu- (H2O)3 provides the best description of the experiment. The result demonstrates that the IR spectrum of solute in solution may be simulated by the solute hydrated with an adequate number of water molecules in the gas phase.
文摘This paper discusses the progress of computer integrated processing (CIPS) of coal-preparation and then preserits an intelligence controlled production-process, device-maintenance and production-management system of coal- preparation based on multi-agents (IICMMS-CP). The construction of the IICMMS-CP, the distributed network control system based on live intelligence control stations and the strategy of implementing distributed intelligence control system are studied in order to overcome the disadvantages brought about by the wide use of the PLC system by coaipreparation plants. The software frame, based on a Multi-Agent Intelligence Control and Maintenance Management integrated system, is studied and the implemention methods of IICMMS-CP are discussed. The characteristics of distributed architecture, cooperation and parallel computing meet the needs of integrated control of coal-preparation plants with large-scale spatial production distribution, densely-related processes and complex systems. Its application further improves the reliability and precision of process control, accuracy of fault identification and intelligence of production adjustment, establishes a technical basis for system integration and flexible production. The main function of the system has been tested in a coal-preparation plant to good effect in stabilizing product quality, improving efficiency and reducing consumption.
文摘By means of an improved ligand-field theory, the "pure electronic" PS and the PS due to EPI of R line of MgO: V^2+ have been calculated, respectively. The calculated results are in very good agreement with the experimental data. The behaviors of the pure electronic PS of R line of MgO:V^2+ and the PS of its R line due to EPI are different. It is the combined effect of them that gives rise to the total PS of R line, which has satisfactorily explained the experimental results. The mixing-degree of |t2^2(^3T1)e^4T2〉 and |t2^3 ^2E〉 in the wavefunetion of R level and its variation with pressure have been calculated and analyzed. The comparison between the feature of R-line PS of MgO:V^2+ and that of MgO:Cr^3+ has been made.
基金the financial supports from the National Natural Science Foundation of China (Nos. U1764253, U2037601, 52001037, 51971044, 52101126)the National Defense Basic Scientific Research Program of China, China Postdoctoral Science Foundation (No. 2021M700566)+3 种基金the Natural Science Foundation of Chongqing, China (No. cstc2019jcyjmsxm X0234)Chongqing Science and Technology Commission, China (No. cstc2017zdcyzdzx X0006)Chongqing Scientific and Technological Talents Program, China (No. KJXX2017002)Qinghai Science and Technology Program, China (No. 2018-GX-A1)。
文摘Micro-alloying design of wrought magnesium(Mg) alloys is an important strategy to achieve high mechanical properties at a low cost. In the last two decades, significant progress has been made from both theory and experiment. In the present review, we try to summarize recent advances in micro-alloying design of wrought Mg alloys from both theoretical and pragmatic perspectives, and provide fundamental data required for establishing the relationship between chemical composition and mechanical properties of Mg alloys. We start with theoretical attempts for understanding the mechanical properties of Mg alloys at different scales, by involving first principle calculations,molecular dynamics, cellular automata, and crystal plasticity. Then, the role of alloying elements is discussed for a series of promising Mg alloys such as Mg-Al, Mg-Zn, Mg-RE(rare-earth element), Mg-Sn, and Mg-Ca families.Potential challenges in the micro-alloying design of Mg alloys are highlighted at the end. The review is expected to provide helpful guidance for the intelligent design of novel wrought Mg alloys and inspire more innovative ideas in this field.
基金Project(20871101)supported by the National Natural Science Foundation of ChinaProject(09C945)supported by the Scientific Research Fund of Hunan Provincial Education Department,China
文摘First-principles calculations based on the density-functional theory were employed to study the crystal structure of vanadium phosphide compounds,such as V3P,V2P,VP,VP2 and VP4. Cohesive energy of five types of vanadium phosphide compounds was calculated to assess their structural stability. The charge density distribution and densities of states of vanadium phosphides were discussed to study further their electronic structures. The results show that the structure of metal-rich compounds is considerably more stable than the phosphorus-rich compositions,and covalent bond exists between the V and P atoms of V3P,V2P,VP,VP2 and VP4.
基金the Natural Science Foundation of China (No.60472037).
文摘This paper presents an analysis on and experimental comparison of several typical fast algorithms for discrete wavelet transform (DWT) and their implementation in image compression, particularly the Mallat algorithm, FFT-based algorithm, Short- length based algorithm and Lifting algorithm. The principles, structures and computational complexity of these algorithms are explored in details respectively. The results of the experiments for comparison are consistent to those simulated by MATLAB. It is found that there are limitations in the implementation of DWT. Some algorithms are workable only for special wavelet transform, lacking in generality. Above all, the speed of wavelet transform, as the governing element to the speed of image processing, is in fact the retarding factor for real-time image processing.