根据X65/2205耐蚀合金内衬管焊接特点,开发了一种钨极氩弧焊焊接工艺。对内衬管焊接接头进行了显微组织分析、点蚀试验,抗H2S应力腐蚀开裂试验(SSCC)分析。结果表明:焊接接头HAZ的显微组织靠母材一侧为粗大的奥氏体晶粒,靠焊缝一侧为奥...根据X65/2205耐蚀合金内衬管焊接特点,开发了一种钨极氩弧焊焊接工艺。对内衬管焊接接头进行了显微组织分析、点蚀试验,抗H2S应力腐蚀开裂试验(SSCC)分析。结果表明:焊接接头HAZ的显微组织靠母材一侧为粗大的奥氏体晶粒,靠焊缝一侧为奥氏体基体上分布着铁素体;根部焊缝的显微组织为奥氏体基体上分布着铁素体。经过72h的点蚀试验后,对根部焊缝而言,钨极氩弧焊背部免充气保护焊接工艺得到的根部焊缝的耐腐蚀性与相邻的根部母材相当。经过720 h SSCC试验后,焊接接头均未发生开裂。展开更多
To improve the surface properties,lining of magnesium alloys with hard powders by shot peening was carried out in order. The hard powders were tried to bond to the workpiece surface due to the collision of many shots....To improve the surface properties,lining of magnesium alloys with hard powders by shot peening was carried out in order. The hard powders were tried to bond to the workpiece surface due to the collision of many shots.In order to fix the hard powders to the surface of the workpiece,the powders were set on an uneven surface.To easily facilitate fixing of powders,lining of the workpiece with the powder sandwiched between two aluminum foil sheets was also attempted.In this experiment,a centrifugal shot peening machine with an electrical heater was employed.The workpieces were magnesium alloys AZ31B and AZ91D,and the hard powders were commercial cemented carbide,alumina,and zirconia.The joinability of hard powders near the lined surface was observed by a optical microscope.The wear resistance was also evaluated by a wear test.The hard powders were successfully bonded to the surface of workpieces by the shot lining process.The results show that the present method is effective in wear resistance of the magnesium alloys.展开更多
文摘根据X65/2205耐蚀合金内衬管焊接特点,开发了一种钨极氩弧焊焊接工艺。对内衬管焊接接头进行了显微组织分析、点蚀试验,抗H2S应力腐蚀开裂试验(SSCC)分析。结果表明:焊接接头HAZ的显微组织靠母材一侧为粗大的奥氏体晶粒,靠焊缝一侧为奥氏体基体上分布着铁素体;根部焊缝的显微组织为奥氏体基体上分布着铁素体。经过72h的点蚀试验后,对根部焊缝而言,钨极氩弧焊背部免充气保护焊接工艺得到的根部焊缝的耐腐蚀性与相邻的根部母材相当。经过720 h SSCC试验后,焊接接头均未发生开裂。
文摘To improve the surface properties,lining of magnesium alloys with hard powders by shot peening was carried out in order. The hard powders were tried to bond to the workpiece surface due to the collision of many shots.In order to fix the hard powders to the surface of the workpiece,the powders were set on an uneven surface.To easily facilitate fixing of powders,lining of the workpiece with the powder sandwiched between two aluminum foil sheets was also attempted.In this experiment,a centrifugal shot peening machine with an electrical heater was employed.The workpieces were magnesium alloys AZ31B and AZ91D,and the hard powders were commercial cemented carbide,alumina,and zirconia.The joinability of hard powders near the lined surface was observed by a optical microscope.The wear resistance was also evaluated by a wear test.The hard powders were successfully bonded to the surface of workpieces by the shot lining process.The results show that the present method is effective in wear resistance of the magnesium alloys.