Extracting aluminum from aluminum alloys in AlCl3-NaCl molten salts was investigated. Al coating was deposited on the copper cathode by the method of direct current deposition using aluminum alloys as anode. The purit...Extracting aluminum from aluminum alloys in AlCl3-NaCl molten salts was investigated. Al coating was deposited on the copper cathode by the method of direct current deposition using aluminum alloys as anode. The purity of the deposited aluminum is about 99.7% with the energy consumption of 3-9 kW·h per kg Al, and the current efficiency is 44%-64% when the deposition process is carried out under 100 mA/cm2 for 4 h at 170 °C. The effects of experimental parameters, such as molar ratio of AlCl3 to NaCl, cathodic current density and electrolysis time, on the current efficiency were studied. The molar ratio of AlCl3 to NaCl has little effect on the current efficiency, and the increase of deposition temperature is beneficial to the increase of current efficiency. However, the increase of current density or electrolysis time results in the decrease of current efficiency. The decrease of current efficiency is mainly related to the formation of dendritic or powder deposit of aluminum which is easy to fall into the electrolyte.展开更多
V-Ti-Fe master alloys were prepared by metaUothermic reduction method, and the influences of the mass ratio of V205 to TiO2, Al and Al-Mg alloy addition amounts on the metal recovery rates and alloy compositions were ...V-Ti-Fe master alloys were prepared by metaUothermic reduction method, and the influences of the mass ratio of V205 to TiO2, Al and Al-Mg alloy addition amounts on the metal recovery rates and alloy compositions were investigated. The results show that appropriate technological parameters are: the mass ratio of V205 to TiO2 is 0.5:1, Al addition represents 95% of the theoretical value, and the Al-Mg alloy addition amount is one third that of the Al addition. The results from energy spectrum analysis show that V and Fe distribute uniformly in the prepared alloy, while the segregation for Ti, i.e. Ti-rich phase is detected. A spray refming process was carried out to reduce the impurity contents of Al and O in the prepared alloys. The Al content drops from 4.27% to 1.86%, and the O content drops from 2.10% to 0.91% after the refining process.展开更多
Recycling of aluminum alloy scrap obtained from delaminated fibre metal laminates (FMLs) was studied through high temperature refining in the presence of a salt flux. The aluminum alloy scrap contains approximately ...Recycling of aluminum alloy scrap obtained from delaminated fibre metal laminates (FMLs) was studied through high temperature refining in the presence of a salt flux. The aluminum alloy scrap contains approximately mass fraction w(Cu) = 4.4%, w(Mg) = 1.1% and w(Mn) = 0.6% (2024 aluminum alloy). The main objective of this research is to obtain a high metal yield, while maintaining its original alloy compositions. The work focuses on the metal yield and quality of recycled A1 alloy under different refining conditions. The NaCI-KC1 salt system was selected as the major components of flux in the A1 alloy recycling. Two different flux compositions were employed at NaC1 to KC1 mass ratios of 44:56 and 70:30 respectively, based on either the euteetic composition, or the European preference. Different additives were introduced into the NaCI-KC1 system to study the effect of flux component on recycling result. Although burning and oxidation loss of the alloying elements during re-melting and refining take place as the drawbacks of conventional refining process, the problems can be solved to a large extent by using an appropriate salt flux. Experimental results indicate that Mg in the alloy gets lost when adding cryolite in the NaCI-KC1 salt system, though the metal yield can reach as high as 98%. However, by adding w(MgF2) = 5% into the NaCI-KC1 salt system (instead of using cryolite) all alloying elements were well controlled to its original composition with a metal yield of almost 98%.展开更多
基金Projects(51104042,51074046)supported by the National Natural Science Foundation of ChinaProject(N120405006)supported by the Fundamental Research Funds for the Central University,China
文摘Extracting aluminum from aluminum alloys in AlCl3-NaCl molten salts was investigated. Al coating was deposited on the copper cathode by the method of direct current deposition using aluminum alloys as anode. The purity of the deposited aluminum is about 99.7% with the energy consumption of 3-9 kW·h per kg Al, and the current efficiency is 44%-64% when the deposition process is carried out under 100 mA/cm2 for 4 h at 170 °C. The effects of experimental parameters, such as molar ratio of AlCl3 to NaCl, cathodic current density and electrolysis time, on the current efficiency were studied. The molar ratio of AlCl3 to NaCl has little effect on the current efficiency, and the increase of deposition temperature is beneficial to the increase of current efficiency. However, the increase of current density or electrolysis time results in the decrease of current efficiency. The decrease of current efficiency is mainly related to the formation of dendritic or powder deposit of aluminum which is easy to fall into the electrolyte.
基金Project (2006AA068128) supported by the High-tech Research and Development Program of China
文摘V-Ti-Fe master alloys were prepared by metaUothermic reduction method, and the influences of the mass ratio of V205 to TiO2, Al and Al-Mg alloy addition amounts on the metal recovery rates and alloy compositions were investigated. The results show that appropriate technological parameters are: the mass ratio of V205 to TiO2 is 0.5:1, Al addition represents 95% of the theoretical value, and the Al-Mg alloy addition amount is one third that of the Al addition. The results from energy spectrum analysis show that V and Fe distribute uniformly in the prepared alloy, while the segregation for Ti, i.e. Ti-rich phase is detected. A spray refming process was carried out to reduce the impurity contents of Al and O in the prepared alloys. The Al content drops from 4.27% to 1.86%, and the O content drops from 2.10% to 0.91% after the refining process.
基金the Royal Netherlands Academy of Science and Arts(KNAW)(No.10CDP026)the National Outstanding Young Scientist Foundation of China (No.50825401)the National Natural Science Foundation of China(No.50821003)
文摘Recycling of aluminum alloy scrap obtained from delaminated fibre metal laminates (FMLs) was studied through high temperature refining in the presence of a salt flux. The aluminum alloy scrap contains approximately mass fraction w(Cu) = 4.4%, w(Mg) = 1.1% and w(Mn) = 0.6% (2024 aluminum alloy). The main objective of this research is to obtain a high metal yield, while maintaining its original alloy compositions. The work focuses on the metal yield and quality of recycled A1 alloy under different refining conditions. The NaCI-KC1 salt system was selected as the major components of flux in the A1 alloy recycling. Two different flux compositions were employed at NaC1 to KC1 mass ratios of 44:56 and 70:30 respectively, based on either the euteetic composition, or the European preference. Different additives were introduced into the NaCI-KC1 system to study the effect of flux component on recycling result. Although burning and oxidation loss of the alloying elements during re-melting and refining take place as the drawbacks of conventional refining process, the problems can be solved to a large extent by using an appropriate salt flux. Experimental results indicate that Mg in the alloy gets lost when adding cryolite in the NaCI-KC1 salt system, though the metal yield can reach as high as 98%. However, by adding w(MgF2) = 5% into the NaCI-KC1 salt system (instead of using cryolite) all alloying elements were well controlled to its original composition with a metal yield of almost 98%.