Based on the experimental data of Ti40 alloy obtained from Gleeble-1500 thermal simulator,an artificial neural network model of high temperature flow stress as a function of strain,strain rate and temperature was esta...Based on the experimental data of Ti40 alloy obtained from Gleeble-1500 thermal simulator,an artificial neural network model of high temperature flow stress as a function of strain,strain rate and temperature was established.In the network model,the input parameters of the model are strain,logarithm strain rate and temperature while flow stress is the output parameter.Multilayer perceptron(MLP) architecture with back-propagation algorithm is utilized.The present study achieves a good performance of the artificial neural network(ANN) model,and the predicted results are in agreement with experimental values.A processing map of Ti40 alloy is obtained with the flow stress predicted by the trained neural network model.The processing map developed by ANN model can efficiently track dynamic recrystallization and flow localization regions of Ti40 alloy during deforming.Subsequently,the safe and instable domains of hot working of Ti40 alloy are identified and validated through microstructural investigations.展开更多
The hot deformation behavior of 7A55 aluminum alloy was investigated at the temperature ranging from 300 ℃ to 450 ℃ and strain rate ranging from 0.01 s-1 to 1 s-1 on a Gleeble-3500 simulator. Processing maps were es...The hot deformation behavior of 7A55 aluminum alloy was investigated at the temperature ranging from 300 ℃ to 450 ℃ and strain rate ranging from 0.01 s-1 to 1 s-1 on a Gleeble-3500 simulator. Processing maps were established in order to apprehend the kinetics of hot deformation and the rate controlling mechanism was interpreted by the kinetic rate analysis obeying power-law relation. The results indicated that one significant domain representing dynamic recrystallization (DRX) existed on the processing maps and lying in 410-450 °C and 0.05-1 s-1. The conclusions of kinetic analysis correlated well with those obtained from processing maps. The apparent activation energy values calculated in the dynamic recrystallization (DRX) domain and the stability regions except dynamic recrystallization (DRX) domain were 91.2 kJ/mol and 128.8 kJ/mol, respectively, which suggested that grain boundary self-diffusion and cross-slip were the rate controlling mechanisms.展开更多
Neural network models of mechanical properties prediction for wrought magnesium alloys were improved by using more reasonable parameters, and were used to develop new types of magnesium alloys. The parameters were con...Neural network models of mechanical properties prediction for wrought magnesium alloys were improved by using more reasonable parameters, and were used to develop new types of magnesium alloys. The parameters were confirmed by comparing prediction errors and correlation coefficients of models, which have been built with all the parameters used commonly with training of all permutations and combinations. The application was focused on Mg-Zn-Mn and Mg-Zn-Y-Zr alloys. The prediction of mechanical properties of Mg-Zn-Mn alloys and the effects of mole ratios of Y to Zn on the strengths in Mg-Zn-Y-Zr alloys were investigated by using the improved models. The predicted results are good agreement with the experimental values. A high strength extruded Mg-Zn-Zr-Y alloy was also developed by the models. The applications of the models indicate that the improved models can be used to develop new types of wrought magnesium alloys.展开更多
The hot deformation behavior of extruded AZ80 magnesium alloy was studied through hot compression tests performed at temperatures ranging from 250 to 450 ~C with strain rates varying from 0.001 to 10 s-1. The flow str...The hot deformation behavior of extruded AZ80 magnesium alloy was studied through hot compression tests performed at temperatures ranging from 250 to 450 ~C with strain rates varying from 0.001 to 10 s-1. The flow stress was corrected due to the deformation heating. The Zener-Hollomon parameter (Z parameter) and processing map were established to describe the hot deformation behavior. The results indicate that the applicable deformation should be conducted at the strain rate of 0.1 s-~ and the temperature range of 350-400 ~C. Besides, the relationship between the microstructure evolution and Z parameter was also discussed. High temperature and low strain rate result in a low Z parameter, which leads to full dynamic recrystallization (DRX) and large DRX grain size in the microstructure. Considering processing map and microstructure, the hot deformation should be carried out at the temperature of 400 ~C and the strain rate of 0.1 s 1.展开更多
The grindability of alloy Ti6AI4V with zireonia alumina and silicon carbide flap wheels, and the effect of process parameters on grinding forces, grinding temperature and surface integrity are studied. The grinding fo...The grindability of alloy Ti6AI4V with zireonia alumina and silicon carbide flap wheels, and the effect of process parameters on grinding forces, grinding temperature and surface integrity are studied. The grinding forces are measured by KISTLER 9265B dynamometer. The grinding temperature response is obtained by NI USB-621X signal collection system. Ground surface morphology and the metallographic structure are observed by the Hirox KN-7700 stereoscopic microcope and the Quanta200 scanning electron microscope (SEM). Surface roughnesses are measured by Mahr Perthometer M1 instrument. The surface microhardnesses are detected by HXS-1000 microhardness tester.展开更多
An artificial neural network (ANN) model was developed for simulating and predicting critical dimension dc of glass forming alloys. A group of Zr-Al-Ni-Cu and Cu-Zr-Ti-Ni bulk metallic glasses were designed based on...An artificial neural network (ANN) model was developed for simulating and predicting critical dimension dc of glass forming alloys. A group of Zr-Al-Ni-Cu and Cu-Zr-Ti-Ni bulk metallic glasses were designed based on the dc and their de values were predicted by the ANN model. Zr-Al-Ni-Cu and Cu-Zr-Ti-Ni bulk metallic glasses were prepared by injecting into copper mold. The amorphous structures and the determination of the dc of as-cast alloys were ascertained using X-ray diffraction. The results show that the predicted de values of glass forming alloys are in agreement with the corresponding experimental values. Thus the developed ANN model is reliable and adequate for designing the composition and predicting the de of glass forming alloy.展开更多
Influence of thermomechanical processing on the microstructure, texture evolution and mechanical properties of A1-Mg-Si-Cu alloy sheets was studied systematically. The quite weak mechanical properties anisotropy was o...Influence of thermomechanical processing on the microstructure, texture evolution and mechanical properties of A1-Mg-Si-Cu alloy sheets was studied systematically. The quite weak mechanical properties anisotropy was obtained in the alloy sheet through thermomechanical processing optimizing. The highly elongated microstmcture is the main structure for the hot or cold-rolled alloy sheets. H {001 } (110) and E { 111 } (110) are the main texture components in the surface layer of hot-rolled sheet, while ]/-fibre is dominant in quarter and center layers. Compared with the hot-rolled sheet, the intensities offl-fibre components are higher after the first cold rolling, but H {001 }(110) component in the surface layer decreases greatly. Almost no deformation texatre can be observed after intermediate annealing. And fl-fibre becomes the main texture again after the final cold rolling. With the reduction of the thickness, the through-thickness texture gradients become much weaker. The through-thickness recrystallization texture in the solution treated sample only has cubeyD {001 }(310) component. The relationship among thermomechanical processing, microstructure, texture and mechanical orouerties was analyzed.展开更多
The high-temperature flow behavior of TCll/Ti-22Al-25 Nb electron beam(EB) weldments was investigated by the isothermal compression tests at the temperature of 900-1060℃ and the strain rate of 0.001-10 s-(-1).Bas...The high-temperature flow behavior of TCll/Ti-22Al-25 Nb electron beam(EB) weldments was investigated by the isothermal compression tests at the temperature of 900-1060℃ and the strain rate of 0.001-10 s-(-1).Based on the experimental data,the constitutive equation that describes the flow stress as a function of strain rate and deformation temperature is obtained.The apparent activation energy of deformation is calculated,which decreases with increasing the strain and the value is 334 kJ/mol at strain of 0.90.The efficiency of power dissipation η changes obviously with the variation of deformation conditions.Under the strain rates of 0.01,0.1 and 1 s-(-1),the value of η increases with increasing the true strain for different deformation temperatures.While the value of η decreases with increasing the strain under the strain rates of 0.001 and 10 s-(-1).The optimum processing condition is(t(opi)=1060℃,ε(opi)=0.1 s-(-1)) with the peak efficiency of 0.51.Under this deformation,dynamic recrystallization(DRX) is observed obviously in the microstructure of welding zone.Under the condition of 1060℃ and 0.001 s-(-1),the deformation mechanism is dominated by dynamic recovery(DRV) and the value of η decreases sharply(η=0.02).The flow instability is predicted to occur since the instability parameter ξ(ε)becomes negative.The hot working process can be carried out safely in the domain with the strain rate of 0.001-0.6 s-(-1) and the temperature of 900-1060℃.展开更多
A new severe plastic deformation (SPD) method that is extrusion-shearing (ES), which includes initial forward extrusion and shearing process subsequently, was developed to fabricate the fine grained AZ31 Mg alloys...A new severe plastic deformation (SPD) method that is extrusion-shearing (ES), which includes initial forward extrusion and shearing process subsequently, was developed to fabricate the fine grained AZ31 Mg alloys. The components of ES die were manufactured and installed to gleeble1500D thermo-mechanical simulator. Microstructure observations were carried out in different positions of ES formed rods. The results show that homogeneous microstructures with mean grain size of 2 μm are obtained at lower temperature as the accumulated true strain is 2.44. Occurring of continuous dynamic recrystallization (DRX) is the main reason for grain refinement during ES process. The experimental results show that the ES process effectively refines the grains of AZ31 magnesium. The production results of ES extrusion with industrial extruder under different extrusion conditions show that the ES extrusion can be applied in large-scale industry.展开更多
The isothermal compression tests were carried out in the Thermecmastor-Z thermo-simulator at temperatures of 800, 850, 900, 950, 1000 and 1050 ℃ and the strain rates of 0.01, 0.1, 1 and 10 s-1. The influence of defor...The isothermal compression tests were carried out in the Thermecmastor-Z thermo-simulator at temperatures of 800, 850, 900, 950, 1000 and 1050 ℃ and the strain rates of 0.01, 0.1, 1 and 10 s-1. The influence of deformation temperature and strain rate on the flow stress of Ti-6Al-2Zr-IMo-IV alloy was studied. Based on the experimental data sets, the high temperature deformation behavior of Ti-6A1-2Zr-IMo-IV alloy was presented using the intelligent method of artificial neural network (ANN). The results indicate that the predicted flow stress values by ANN model is quite consistent with the experimental results, which implies that the artificial neural network is an effective tool for studying the hot deformation behavior of the present alloy. In addition, the development of graphical user interface is implemented using Visual Basic programming language.展开更多
The microstructural evolution of AZ91D magnesium alloy prepared by means of the cyclic upsetting-extrusion and partial remelting was investigated. The effects of remelting temperature and holding time on microstructur...The microstructural evolution of AZ91D magnesium alloy prepared by means of the cyclic upsetting-extrusion and partial remelting was investigated. The effects of remelting temperature and holding time on microstructure of semi-solid AZ91D magnesium alloy were studied. Furthermore, tensile properties of thixoextruded AZ91D magnesium alloy components were determined. The results show that the cyclic upsetting-extrusion followed by partial remelting is effective in producing semi-solid AZ91D magnesium alloy for thixofonning. During the partial remelting, with the increase of remelting temperature and holding time, the solid grain size increases and the degree of spheroidization tends to be improved. The tensile mechanical properties of thixoextruded AZ91D magnesium alloy components produced by cyclic upsetting-extrusion and partial remelting are better than those of the same alloy produced by casting.展开更多
Microstructure and tensile behaviors of AZ31 magnesium alloy prepared by friction stir processing(FSP) were investigated.The results show that microstructure of the AZ31 hot-rolled plate with an average grain size o...Microstructure and tensile behaviors of AZ31 magnesium alloy prepared by friction stir processing(FSP) were investigated.The results show that microstructure of the AZ31 hot-rolled plate with an average grain size of 92.0 μm is refined to 11.4 μm after FSP.The FSP AZ31 alloy exhibits excellent plasticity at elevated temperature,with an elongation to failure of 1050% at 723 K and a strain rate of 5×10-4 s-1.The elongation of the FSP material is 268% at 723 K and 1×10-2 s-1,indicating that high strain rate superplasticity could be achieved.On the other hand,the hot-rolled base material,which has a coarse grain structure,possesses no superplasticity under the experimental conditions.展开更多
基金Project(2007CB613807)supported by the National Basic Research Program of ChinaProject(NCET-07-0696)supported by the New Century Excellent Talents in University,ChinaProject(35-TP-2009)supported by the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,China
文摘Based on the experimental data of Ti40 alloy obtained from Gleeble-1500 thermal simulator,an artificial neural network model of high temperature flow stress as a function of strain,strain rate and temperature was established.In the network model,the input parameters of the model are strain,logarithm strain rate and temperature while flow stress is the output parameter.Multilayer perceptron(MLP) architecture with back-propagation algorithm is utilized.The present study achieves a good performance of the artificial neural network(ANN) model,and the predicted results are in agreement with experimental values.A processing map of Ti40 alloy is obtained with the flow stress predicted by the trained neural network model.The processing map developed by ANN model can efficiently track dynamic recrystallization and flow localization regions of Ti40 alloy during deforming.Subsequently,the safe and instable domains of hot working of Ti40 alloy are identified and validated through microstructural investigations.
基金Project(2012CB619505)supported by the National Basic Research Program of China
文摘The hot deformation behavior of 7A55 aluminum alloy was investigated at the temperature ranging from 300 ℃ to 450 ℃ and strain rate ranging from 0.01 s-1 to 1 s-1 on a Gleeble-3500 simulator. Processing maps were established in order to apprehend the kinetics of hot deformation and the rate controlling mechanism was interpreted by the kinetic rate analysis obeying power-law relation. The results indicated that one significant domain representing dynamic recrystallization (DRX) existed on the processing maps and lying in 410-450 °C and 0.05-1 s-1. The conclusions of kinetic analysis correlated well with those obtained from processing maps. The apparent activation energy values calculated in the dynamic recrystallization (DRX) domain and the stability regions except dynamic recrystallization (DRX) domain were 91.2 kJ/mol and 128.8 kJ/mol, respectively, which suggested that grain boundary self-diffusion and cross-slip were the rate controlling mechanisms.
基金Project(50725413)supported by the National Natural Science Foundation of ChinaProject(2007CB613704)supported by the National Basic Research Program of ChinaProject(2010CSTC-BJLKR)supported by Chongqing Science and Technology Commission,China
文摘Neural network models of mechanical properties prediction for wrought magnesium alloys were improved by using more reasonable parameters, and were used to develop new types of magnesium alloys. The parameters were confirmed by comparing prediction errors and correlation coefficients of models, which have been built with all the parameters used commonly with training of all permutations and combinations. The application was focused on Mg-Zn-Mn and Mg-Zn-Y-Zr alloys. The prediction of mechanical properties of Mg-Zn-Mn alloys and the effects of mole ratios of Y to Zn on the strengths in Mg-Zn-Y-Zr alloys were investigated by using the improved models. The predicted results are good agreement with the experimental values. A high strength extruded Mg-Zn-Zr-Y alloy was also developed by the models. The applications of the models indicate that the improved models can be used to develop new types of wrought magnesium alloys.
文摘The hot deformation behavior of extruded AZ80 magnesium alloy was studied through hot compression tests performed at temperatures ranging from 250 to 450 ~C with strain rates varying from 0.001 to 10 s-1. The flow stress was corrected due to the deformation heating. The Zener-Hollomon parameter (Z parameter) and processing map were established to describe the hot deformation behavior. The results indicate that the applicable deformation should be conducted at the strain rate of 0.1 s-~ and the temperature range of 350-400 ~C. Besides, the relationship between the microstructure evolution and Z parameter was also discussed. High temperature and low strain rate result in a low Z parameter, which leads to full dynamic recrystallization (DRX) and large DRX grain size in the microstructure. Considering processing map and microstructure, the hot deformation should be carried out at the temperature of 400 ~C and the strain rate of 0.1 s 1.
基金Supported by the Natural Science Foundation of Jiangsu Province (BK2006723)New Century Ex-cellent Talents in University from Ministry of Education of China (NCET-07-0435)~~
文摘The grindability of alloy Ti6AI4V with zireonia alumina and silicon carbide flap wheels, and the effect of process parameters on grinding forces, grinding temperature and surface integrity are studied. The grinding forces are measured by KISTLER 9265B dynamometer. The grinding temperature response is obtained by NI USB-621X signal collection system. Ground surface morphology and the metallographic structure are observed by the Hirox KN-7700 stereoscopic microcope and the Quanta200 scanning electron microscope (SEM). Surface roughnesses are measured by Mahr Perthometer M1 instrument. The surface microhardnesses are detected by HXS-1000 microhardness tester.
基金Project(50874045)supported by the National Natural Science Foundation of China
文摘An artificial neural network (ANN) model was developed for simulating and predicting critical dimension dc of glass forming alloys. A group of Zr-Al-Ni-Cu and Cu-Zr-Ti-Ni bulk metallic glasses were designed based on the dc and their de values were predicted by the ANN model. Zr-Al-Ni-Cu and Cu-Zr-Ti-Ni bulk metallic glasses were prepared by injecting into copper mold. The amorphous structures and the determination of the dc of as-cast alloys were ascertained using X-ray diffraction. The results show that the predicted de values of glass forming alloys are in agreement with the corresponding experimental values. Thus the developed ANN model is reliable and adequate for designing the composition and predicting the de of glass forming alloy.
基金Project(2013AA032403) supported by the National High-Tech Research and Development Program of ChinaProject(YETP0409) supported by the Beijing Higher Education Young Elite Teacher Project in 2013,ChinaProject(51301016) supported by the National Natural Science Foundation of China
文摘Influence of thermomechanical processing on the microstructure, texture evolution and mechanical properties of A1-Mg-Si-Cu alloy sheets was studied systematically. The quite weak mechanical properties anisotropy was obtained in the alloy sheet through thermomechanical processing optimizing. The highly elongated microstmcture is the main structure for the hot or cold-rolled alloy sheets. H {001 } (110) and E { 111 } (110) are the main texture components in the surface layer of hot-rolled sheet, while ]/-fibre is dominant in quarter and center layers. Compared with the hot-rolled sheet, the intensities offl-fibre components are higher after the first cold rolling, but H {001 }(110) component in the surface layer decreases greatly. Almost no deformation texatre can be observed after intermediate annealing. And fl-fibre becomes the main texture again after the final cold rolling. With the reduction of the thickness, the through-thickness texture gradients become much weaker. The through-thickness recrystallization texture in the solution treated sample only has cubeyD {001 }(310) component. The relationship among thermomechanical processing, microstructure, texture and mechanical orouerties was analyzed.
基金Project(51175431)supported by the National Natural Science Foundation of China
文摘The high-temperature flow behavior of TCll/Ti-22Al-25 Nb electron beam(EB) weldments was investigated by the isothermal compression tests at the temperature of 900-1060℃ and the strain rate of 0.001-10 s-(-1).Based on the experimental data,the constitutive equation that describes the flow stress as a function of strain rate and deformation temperature is obtained.The apparent activation energy of deformation is calculated,which decreases with increasing the strain and the value is 334 kJ/mol at strain of 0.90.The efficiency of power dissipation η changes obviously with the variation of deformation conditions.Under the strain rates of 0.01,0.1 and 1 s-(-1),the value of η increases with increasing the true strain for different deformation temperatures.While the value of η decreases with increasing the strain under the strain rates of 0.001 and 10 s-(-1).The optimum processing condition is(t(opi)=1060℃,ε(opi)=0.1 s-(-1)) with the peak efficiency of 0.51.Under this deformation,dynamic recrystallization(DRX) is observed obviously in the microstructure of welding zone.Under the condition of 1060℃ and 0.001 s-(-1),the deformation mechanism is dominated by dynamic recovery(DRV) and the value of η decreases sharply(η=0.02).The flow instability is predicted to occur since the instability parameter ξ(ε)becomes negative.The hot working process can be carried out safely in the domain with the strain rate of 0.001-0.6 s-(-1) and the temperature of 900-1060℃.
基金Project (2007CB613700) supported by the National Basic Research Program of ChinaProject (50725413)supported by the National Natural Science Foundation of China+2 种基金Project (CQ CSTC,2010BB4301)supported by National Science Foundation of Chongqing, ChinaProject (CSTC2009AB4008) supported by Chongqing Sci & Tech Development Program, ChinaProject (2010CSTC-HDLS)supported by Chongqing Sci & Tech Commission, China
文摘A new severe plastic deformation (SPD) method that is extrusion-shearing (ES), which includes initial forward extrusion and shearing process subsequently, was developed to fabricate the fine grained AZ31 Mg alloys. The components of ES die were manufactured and installed to gleeble1500D thermo-mechanical simulator. Microstructure observations were carried out in different positions of ES formed rods. The results show that homogeneous microstructures with mean grain size of 2 μm are obtained at lower temperature as the accumulated true strain is 2.44. Occurring of continuous dynamic recrystallization (DRX) is the main reason for grain refinement during ES process. The experimental results show that the ES process effectively refines the grains of AZ31 magnesium. The production results of ES extrusion with industrial extruder under different extrusion conditions show that the ES extrusion can be applied in large-scale industry.
基金Project (2007CB613807) supported by the National Basic Research Program of ChinaProject (35-TP-2009) supported by the Fund of the State Key Laboratory of Solidification Processing in NWPU,ChinaProject (51075333) supported by the National Natural Science Foundation of China
文摘The isothermal compression tests were carried out in the Thermecmastor-Z thermo-simulator at temperatures of 800, 850, 900, 950, 1000 and 1050 ℃ and the strain rates of 0.01, 0.1, 1 and 10 s-1. The influence of deformation temperature and strain rate on the flow stress of Ti-6Al-2Zr-IMo-IV alloy was studied. Based on the experimental data sets, the high temperature deformation behavior of Ti-6A1-2Zr-IMo-IV alloy was presented using the intelligent method of artificial neural network (ANN). The results indicate that the predicted flow stress values by ANN model is quite consistent with the experimental results, which implies that the artificial neural network is an effective tool for studying the hot deformation behavior of the present alloy. In addition, the development of graphical user interface is implemented using Visual Basic programming language.
文摘The microstructural evolution of AZ91D magnesium alloy prepared by means of the cyclic upsetting-extrusion and partial remelting was investigated. The effects of remelting temperature and holding time on microstructure of semi-solid AZ91D magnesium alloy were studied. Furthermore, tensile properties of thixoextruded AZ91D magnesium alloy components were determined. The results show that the cyclic upsetting-extrusion followed by partial remelting is effective in producing semi-solid AZ91D magnesium alloy for thixofonning. During the partial remelting, with the increase of remelting temperature and holding time, the solid grain size increases and the degree of spheroidization tends to be improved. The tensile mechanical properties of thixoextruded AZ91D magnesium alloy components produced by cyclic upsetting-extrusion and partial remelting are better than those of the same alloy produced by casting.
基金Project (2009Z2-D811) supported by Guangzhou Science and Technology Development Program, ChinaProject (2009ZM0264) supported by the Fundamental Research Funds for the Central Universities, China
文摘Microstructure and tensile behaviors of AZ31 magnesium alloy prepared by friction stir processing(FSP) were investigated.The results show that microstructure of the AZ31 hot-rolled plate with an average grain size of 92.0 μm is refined to 11.4 μm after FSP.The FSP AZ31 alloy exhibits excellent plasticity at elevated temperature,with an elongation to failure of 1050% at 723 K and a strain rate of 5×10-4 s-1.The elongation of the FSP material is 268% at 723 K and 1×10-2 s-1,indicating that high strain rate superplasticity could be achieved.On the other hand,the hot-rolled base material,which has a coarse grain structure,possesses no superplasticity under the experimental conditions.