The effects of non-flux purification techniques on the mechanical properties and microstructure of AZ91 magnesium alloy were investigated by ICP,OM,XRD and SEM.The results show that Ar spraying with high flow rate cou...The effects of non-flux purification techniques on the mechanical properties and microstructure of AZ91 magnesium alloy were investigated by ICP,OM,XRD and SEM.The results show that Ar spraying with high flow rate could remove non-metallic inclusions and improve the mechanical properties of AZ91.The alloy obtains the best properties after argon spraying for 30 min at the melt temperature of 740 °C.The ceramic foam filter(CFF) could effectively improve the ultimate tensile strength and elongation of AZ91 alloy,especially the elongation,which increase with increasing pores per inch(ppi) and the thickness of CFF.Non-flux purification does not change the microstructure of AZ91 alloy.However,filtration has a certain effect on the fracture pattern of AZ91 alloy.To improve the mechanical properties effectively,both filtration and gas spraying should be utilized together.展开更多
Ti-6Al-4V specimens were fabricated by selective laser melting(SLM)to study the effect of thermal treatment on the phase transformation,elemental diffusion,microstructure,and mechanical properties.The results show tha...Ti-6Al-4V specimens were fabricated by selective laser melting(SLM)to study the effect of thermal treatment on the phase transformation,elemental diffusion,microstructure,and mechanical properties.The results show that vanadium enriches around the boundary ofαphases with increasing annealing temperature to 973 K,andα′phases transform intoα+βat 973 K.The typicalα′martensite microstructure transforms to fine-scale equiaxed microstructure at 973 K and the equiaxed microstructure significantly coarsens with increasing annealing temperature to 1273 K.The SLM Ti-6Al-4V alloy annealed at 973 K exhibits a well-balanced combination of strength and ductility((1305±25)MPa and(37±3)%,respectively).展开更多
Nanocrystalline and amorphous Mg-Nd-Ni-Cu quaternary alloys with a composition of(Mg_(24)Ni_(10)Cu_2)_(100-x)Nd_x(x=0, 5, 10, 15, 20) were prepared by melt spinning technology and their structures as well as gaseous h...Nanocrystalline and amorphous Mg-Nd-Ni-Cu quaternary alloys with a composition of(Mg_(24)Ni_(10)Cu_2)_(100-x)Nd_x(x=0, 5, 10, 15, 20) were prepared by melt spinning technology and their structures as well as gaseous hydrogen storage characteristics were investigated. The XRD, TEM and SEM linked with EDS detections reveal that the as-spun Nd-free alloy holds an entire nanocrystalline structure but a nanocrystalline and amorphous structure for the as-spun Nd-added alloy, implying that the addition of Nd facilitates the glass forming in the Mg_2Ni-type alloy. Furthermore, the degree of amorphization of the as-spun Nd-added alloy and thermal stability of the amorphous structure clearly increase with the spinning rate rising. The melt spinning ameliorates the hydriding and dehydriding kinetics of the alloys dramatically. Specially, the rising of the spinning rate from 0(the as-cast was defined as the spinning rate of 0 m/s) to 40 m/s brings on the hydrogen absorption saturation ratio(R_5~a)(a ratio of the hydrogen absorption quantity in 5 min to the saturated hydrogen absorption capacity) increasing from 36.9% to 91.5% and the hydrogen desorption ratio(R_(1 0)~d)(a ratio of the hydrogen desorption quantity in 10 min to the saturated hydrogen absorption capacity) rising from 16.4% to 47.7% for the(x=10) alloy, respectively.展开更多
Mo-based alloys are widely used for their excellent wear and corrosion resistance as well as high temperature resistance.Mo-NiCrBSi and Mo-Ni alloy coatings were prepared on 1020 water wall tube by laser cladding tech...Mo-based alloys are widely used for their excellent wear and corrosion resistance as well as high temperature resistance.Mo-NiCrBSi and Mo-Ni alloy coatings were prepared on 1020 water wall tube by laser cladding technology in the present study.The microstructure and phase compositions were analyzed by means of the scanning electron microscopy(SEM),energy-dispersive spectroscopy(EDS)and X-ray diffractometry(XRD).The corrosion properties of the coatings were evaluated by an electrochemical experiment at room temperature in 3.5 wt.%NaCl electrolyte.With increasing content of Mo,the structure homogeneity in Mo-Ni coatings deteriorated,the grain size increased,the average hardness and the corrosion resistance declined,due to the more content of harmful phases.Compared to the Mo-Ni coatings,the overall performance was better for the Mo-NiCrBSi,which had the higher hardness contributed by the element B and Si as well as the better corrosion resistance due to the addition of Cr.展开更多
基金Project(08XD14020) supported by the Program of Shanghai Subject Chief Scientist,ChinaProject(2007CB613701) supported by the National Basic Research Program of ChinaProject(2009AA033501) supported by the National High-tech Research and Development Program of China
文摘The effects of non-flux purification techniques on the mechanical properties and microstructure of AZ91 magnesium alloy were investigated by ICP,OM,XRD and SEM.The results show that Ar spraying with high flow rate could remove non-metallic inclusions and improve the mechanical properties of AZ91.The alloy obtains the best properties after argon spraying for 30 min at the melt temperature of 740 °C.The ceramic foam filter(CFF) could effectively improve the ultimate tensile strength and elongation of AZ91 alloy,especially the elongation,which increase with increasing pores per inch(ppi) and the thickness of CFF.Non-flux purification does not change the microstructure of AZ91 alloy.However,filtration has a certain effect on the fracture pattern of AZ91 alloy.To improve the mechanical properties effectively,both filtration and gas spraying should be utilized together.
基金Project(2020A1515110869)supported by Guangdong Basic and Applied Basic Research Foundation,ChinaProject(GJHZ20190822095418365)supported by Shenzhen International Cooperation Research,China+3 种基金Project(51775351)supported by the National Natural Science Foundation of ChinaProject(2019011)supported by the NTUT-SZU Joint Research Program,ChinaProject(2019040)supported by the Natural Science Foundation of SZU,ChinaProject(ASTRA6-6)supported by the European Regional Development Fund,European Union。
文摘Ti-6Al-4V specimens were fabricated by selective laser melting(SLM)to study the effect of thermal treatment on the phase transformation,elemental diffusion,microstructure,and mechanical properties.The results show that vanadium enriches around the boundary ofαphases with increasing annealing temperature to 973 K,andα′phases transform intoα+βat 973 K.The typicalα′martensite microstructure transforms to fine-scale equiaxed microstructure at 973 K and the equiaxed microstructure significantly coarsens with increasing annealing temperature to 1273 K.The SLM Ti-6Al-4V alloy annealed at 973 K exhibits a well-balanced combination of strength and ductility((1305±25)MPa and(37±3)%,respectively).
基金Projects(51161015,51371094)supported by the National Natural Science Foundation of China
文摘Nanocrystalline and amorphous Mg-Nd-Ni-Cu quaternary alloys with a composition of(Mg_(24)Ni_(10)Cu_2)_(100-x)Nd_x(x=0, 5, 10, 15, 20) were prepared by melt spinning technology and their structures as well as gaseous hydrogen storage characteristics were investigated. The XRD, TEM and SEM linked with EDS detections reveal that the as-spun Nd-free alloy holds an entire nanocrystalline structure but a nanocrystalline and amorphous structure for the as-spun Nd-added alloy, implying that the addition of Nd facilitates the glass forming in the Mg_2Ni-type alloy. Furthermore, the degree of amorphization of the as-spun Nd-added alloy and thermal stability of the amorphous structure clearly increase with the spinning rate rising. The melt spinning ameliorates the hydriding and dehydriding kinetics of the alloys dramatically. Specially, the rising of the spinning rate from 0(the as-cast was defined as the spinning rate of 0 m/s) to 40 m/s brings on the hydrogen absorption saturation ratio(R_5~a)(a ratio of the hydrogen absorption quantity in 5 min to the saturated hydrogen absorption capacity) increasing from 36.9% to 91.5% and the hydrogen desorption ratio(R_(1 0)~d)(a ratio of the hydrogen desorption quantity in 10 min to the saturated hydrogen absorption capacity) rising from 16.4% to 47.7% for the(x=10) alloy, respectively.
基金supported by the National Natural Science Foundation of China(Grant Nos.11372110and 51101056)+1 种基金the National Science and Technology Support Program(Grant No.2011BAE12B03)the Fundamental Research Funds for the Central Universities(Grant No.12MS07)
文摘Mo-based alloys are widely used for their excellent wear and corrosion resistance as well as high temperature resistance.Mo-NiCrBSi and Mo-Ni alloy coatings were prepared on 1020 water wall tube by laser cladding technology in the present study.The microstructure and phase compositions were analyzed by means of the scanning electron microscopy(SEM),energy-dispersive spectroscopy(EDS)and X-ray diffractometry(XRD).The corrosion properties of the coatings were evaluated by an electrochemical experiment at room temperature in 3.5 wt.%NaCl electrolyte.With increasing content of Mo,the structure homogeneity in Mo-Ni coatings deteriorated,the grain size increased,the average hardness and the corrosion resistance declined,due to the more content of harmful phases.Compared to the Mo-Ni coatings,the overall performance was better for the Mo-NiCrBSi,which had the higher hardness contributed by the element B and Si as well as the better corrosion resistance due to the addition of Cr.