Designing highly efficient Pt-free electrocatalysts with low overpotential for an alkaline hydrogen evolution reaction(HER)remains a significant challenge.Here,a novel and efficient cobalt(Co),ruthenium(Ru)bimetallic ...Designing highly efficient Pt-free electrocatalysts with low overpotential for an alkaline hydrogen evolution reaction(HER)remains a significant challenge.Here,a novel and efficient cobalt(Co),ruthenium(Ru)bimetallic electrocatalyst composed of CoRu nanoalloy decorated on the N-doped carbon nanotubes(CoRu@N-CNTs),was prepared by reacting fullerenol with melamine via hydrothermal treatment and followed by pyrolysis.Benefiting from the electronic communication between Co and Ru sites,the as-obtained CoRu@N-CNTs catalyst exhibited superior electrocatalytic HER activity.To deliver a current density of 10 mA·cm^(-2),it required an overpotential of merely 19 mV along with a Tafel slope of 26.19 mV·dec^(-1)in 1 mol·L^(-1)potassium hydroxide(KOH)solution,outperforming the benchmark Pt/C catalyst.The present work would pave a new way towards the design and construction of an efficient electrocatalyst for energy storage and conversion.展开更多
Proton exchange membrane fuel cells(PEMFCs)are considered ideal energy‐conversion devices because of their environmentally friendly nature and high theoretical energy efficiency.However,cathodic polarization,which is...Proton exchange membrane fuel cells(PEMFCs)are considered ideal energy‐conversion devices because of their environmentally friendly nature and high theoretical energy efficiency.However,cathodic polarization,which is a result of the sluggish oxygen reduction reaction(ORR)kinetics,is a significant source of energy loss and reduces fuel cell efficiency.Further,the need to use Pt in commercial Pt/C cathodes has restricted their large‐scale application in fuel cells because of its high cost and poor durability.Thus,improvements in the activity and durability of Pt‐based catalyst are required to reduce the amount of Pt required and,thus,costs,while increasing the ORR rate and fuel cell power density and promoting widespread PEMFC commercialization.In recent years,atomically ordered Pt‐based intermetallic nanocrystals have received tremendous attention owing to their excellent activity and stability for the ORR.Therefore,in this review,we first introduce the formation of intermetallic compounds from the perspective of thermodynamics and kinetics to lay a theoretical foundation for the design of these compounds.In addition,optimization strategies for Pt‐based ordered intermetallic catalysts are summarized in terms of the catalyst composition,size,and morphology.Finally,we conclude with a discussion of the current challenges and future prospects of Pt‐based ordered alloys.This review is designed to help readers gain insights into the recent developments in and rational design of Pt‐based intermetallic nanocrystals for the ORR and encourage research that will enable the commercialization of PEMFCs.展开更多
Epidemics are threatening public health and social development.Emerging as a green disinfectant,H_(2)O_(2)can prevent the breakout of epidemics in migration.Electrochemical H_(2)O_(2)production powered by renewable el...Epidemics are threatening public health and social development.Emerging as a green disinfectant,H_(2)O_(2)can prevent the breakout of epidemics in migration.Electrochemical H_(2)O_(2)production powered by renewable electricity provides a clean and decentralized solution for on-site disinfection.This review firstly discussed the efficacy of H_(2)O_(2)in disinfection.Then necessary fundamental principles are summarized to gain insight into electrochemical H_(2)O_(2)production.The focus is on exploring pathways to realize a highly efficient H_(2)O_(2)production.Progress in advanced electrocatalysts,typically single-atom catalysts for the two-electron oxygen reduction reaction(2e−ORR),are highlighted to provide high H_(2)O_(2)selectivity design strategies.Finally,a rational design of electrode and electrolytic cells is outlined to realize the on-site disinfection.Overall,this critical review contributes to exploiting the potentials and constraints of electrochemical H_(2)O_(2)generation in disinfection and pinpoints future research directions required for implementation.展开更多
In this work,we have performed density functional theory(DFT)calculations to investigate the methanol electro‐oxidation reaction(MOR)catalyzed by the Pt,PtCu alloy and Cu.The complex reaction networks,including the i...In this work,we have performed density functional theory(DFT)calculations to investigate the methanol electro‐oxidation reaction(MOR)catalyzed by the Pt,PtCu alloy and Cu.The complex reaction networks,including the intermediate dehydrogenation,water dissociation and anti‐poison reaction steps,are systematically investigated to explore the mechanisms.At the standard condition of pH=0 and zero potential,for Cu,most dehydrogenation steps along the favorable pathway are endergonic,making it less active in MOR.For the Pt and PtCu alloy,their dehydrogenation steps are mainly exergonic,but the formed CO intermediate binds too tightly on Pt,that can accumulate on active sites to poison the electro‐catalyst.The CO can be consumed by the thermodynamic reaction with OH*,which comes from water dissociation.DFT calculation shows alloying the Pt with Cu could not only reduce the free energy barrier for binding between CO*and OH*,but also assist the water dissociation to produce more OH*for that anti‐poison reaction.That makes the PtCu alloy more active than the pure Pt electrode in experiment.The results reveal the importance of anti‐poison reaction and water dissociation in MOR,which could be applied to the rational design of more active alloy electro‐catalysts in future.展开更多
Exploring low-cost cocatalyst to take over noble metal cocatalyst is still challenging in the field of photocatalytic proton reduction.Herein,Ni-P alloy clusters are anchored onto the surface of polymeric carbon nitri...Exploring low-cost cocatalyst to take over noble metal cocatalyst is still challenging in the field of photocatalytic proton reduction.Herein,Ni-P alloy clusters are anchored onto the surface of polymeric carbon nitride through a chemical plating method and serve as highly efficient and stable cocatalyst toward photocatalytic proton reduction.An effective role in promoting the charge separation and migration of the photocatalytic system is demonstrated for Ni-P clusters,which essentially enhance the photocatalytic H2-production rate to a value of 1506μmol h^–1 g^–1.This performance is comparable to that of the benchmark of Pt-modified carbon nitride.This work highlights that the Ni-P alloy could be a potential alternative to noble metal cocatalyst in the photocatalytic reactions.展开更多
Fuel cells have attracted extensive attention due to their high conversion efficiency and environmental friendliness.However,their wider application is limited by the poor activity and high cost of platinum(Pt),which ...Fuel cells have attracted extensive attention due to their high conversion efficiency and environmental friendliness.However,their wider application is limited by the poor activity and high cost of platinum(Pt),which is widely used as the cathode catalyst to overcome the slow kinetics associated with oxygen reduction reaction(ORR).Pt‐based composites with one‐dimensional(1D)nanoarchitectures demonstrate great advantages towards efficient ORR catalysis.This review focuses on the recent advancements in the design and synthesis of 1D Pt‐based ORR catalysts.After introducing the fundamental ORR mechanism and the advanced 1D architectures,their synthesis strategies(template‐based and template‐free methods)are discoursed.Subsequently,their morphology and structure optimization are highlighted,followed by the superstructure assembly using 1D Pt‐based blocks.Finally,the challenges and perspectives on the synthesis innovation,structure design,physical characterization,and theoretical investigations are proposed for 1D Pt‐based ORR nanocatalysts.We anticipate this study will inspire more research endeavors on efficient ORR nanocatalysts in fuel cell application.展开更多
Polyethylene-nanocomposites with CaCO3-weight fractions from 0 to 15 wt.% were prepared by in-situ polymerization with Me2Si(Ind)2ZrC12/MAO metallocene catalysts. A high activity especially in the presence of TIBA w...Polyethylene-nanocomposites with CaCO3-weight fractions from 0 to 15 wt.% were prepared by in-situ polymerization with Me2Si(Ind)2ZrC12/MAO metallocene catalysts. A high activity especially in the presence of TIBA was observed. The morphology was investigated by using raster electron microscopy (REM) showing that the CaCO3-nanoparticles are uniformly distributed. The melting temperatures and the crystallization temperatures are not much influenced by increasing filler content.展开更多
Water oxidation is one of the most attractive techniques for intermittent renewable energy conversion and storage.The oxygen evolution electrocatalytic performance of an amorphous Co-B alloy and its derivatives were s...Water oxidation is one of the most attractive techniques for intermittent renewable energy conversion and storage.The oxygen evolution electrocatalytic performance of an amorphous Co-B alloy and its derivatives were studied.These materials were chemically synthesized by reducing a Co salt with NaBH4.The amorphous Co-B alloy showed good electrocatalytic activity in oxygen evolution but its stability was poor.A hydrotalcite‐wrapped Co-B alloy was synthesized by mild oxidation.The electrocatalytic activity of this material in the oxygen evolution reaction was better than that of a commercially available Ir/C catalyst.展开更多
The Ni−MoO_(2) heterostructure was synthesized in suit on porous bulk NiMo alloy by a facile powder metallurgy and hydrothermal method.The results of field emission scanning electron microscopy(SEM),field emission tra...The Ni−MoO_(2) heterostructure was synthesized in suit on porous bulk NiMo alloy by a facile powder metallurgy and hydrothermal method.The results of field emission scanning electron microscopy(SEM),field emission transmission electron microscopy(TEM)and X-ray photoelectron spectroscopy(XPS)reveal that the as-prepared electrode possesses the heterostructure and a layer of Ni(OH)_(2) nanosheets is formed on the surface of Ni−MoO_(2) electrode simultaneously after hydrothermal treatment,which provides abundant interface and much active sites,as well as much active specific surface area.The results of hydrogen evolution reaction indicate that the Ni−MoO_(2) heterostructure electrode exhibits excellent catalytic performance,requiring only 41 mV overpotential to reach the current density of 10 mA/cm^(2).It also possesses a small Tafel slope of 52.7 mV/dec and long-term stability of electrolysis in alkaline medium.展开更多
Carbon supported Pt-Co alloys are among the most promising electrocatalysts towards oxygen reduction reaction(ORR)for the application in low temperature fuel cells and beyond,thus their facile and green synthesis is h...Carbon supported Pt-Co alloys are among the most promising electrocatalysts towards oxygen reduction reaction(ORR)for the application in low temperature fuel cells and beyond,thus their facile and green synthesis is highly demanded.Herein we initially report an alternate aqueous phase one-pot synthesis of such catalysts(containing nominally ca.20 wt.%Pt)based on dimethylamine borane(DMAB)reduction.The as-obtained electrocatalyst(denoted as Pt3Co/C-DMAB)is compared with the ones obtained by NaBH4 and N2H4·H2O reduction(denoted as Pt3Co/C-NaBH4 and Pt3Co/C-N2H4·H2O,respectively)as well as a commercial Pt/C,in terms of the structure and electrocatalytic property.It turns out that Pt3Co/C-DMAB exhibits the highest ORR performance among all the tested samples in an O2-saturated 0.1 mol/L HClO4,with the mass activity(specific activity)ca.4(6)times as large as that for Pt/C.After 10000 cycles of the accelerated degradation test,the half-wave potential for ORR on Pt3Co/C-DMAB decreases only by 4 mV,in contrast to 24 mV for that on Pt/C.Pt3Co/C-NaBH4 or Pt3Co/C-N2H4·H2O shows a specific activity comparable to that for Pt3Co/C-DMAB,but a mass activity similar to that for Pt/C.ICP-AES,TEM,XRD and XPS characterizations indicate that Pt3Co nanoparticles are well-dispersed and alloyed with a mean particle size of ca.3.4±0.4 nm,contributing to the prominent electrocatalytic performance of Pt3Co/C-DMAB.This simple aqueous synthetic route may provide an alternate opportunity for developing efficient practical electrocatalysts for ORR.展开更多
In recent years, the scale of use of fuel cells (FCs) has been increasing continuously. One of the essential elements that affect their work is a catalyst. Precious metals (mainly platinum) are known for their hig...In recent years, the scale of use of fuel cells (FCs) has been increasing continuously. One of the essential elements that affect their work is a catalyst. Precious metals (mainly platinum) are known for their high efficiency as FC catalysts. However, their high cost holds back the FCs from application on a large scale. Therefore, catalysts that do not contain precious metals are sought. Studies are focused mainly on the search for fuel electrode catalysts, but for the efficiency of FCs also the oxygen electrode catalyst is of great significance. The paper presents an analysis of the possibilitiesof using Ni-Co alloy as a catalyst for the oxygen electrode of the FC.展开更多
Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient e...Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient energy storage. Nickel/iron (NiFe)-based compounds have been known as active OER catalysts since the last century, and renewed interest has been witnessed in recent years on developing advanced NiFe-based materials for better activity and stability. In this review, we present the early discovery and recent progress on NiFe-based OER electrocatalysts in terms of chemical properties, synthetic methodologies and catalytic performances. The advantages and disadvantages of each class of NiFe-based compounds are summarized, including NiFe alloys, electrodeposited films and layered double hydroxide nanoplates. Some mechanistic studies of the active phase of NiFe-based compounds are introduced and discussed to give insight into the nature of active catalytic sites, which could facilitate further improving NiFe based OER electrocatalysts. Finally, some applications of NiFe- based compounds for OER are described, including the development of an electrolyzer operating with a single AAA battery with voltage below 1.5 V and high performance rechargeable Zn-air batteries.展开更多
The rapid consumption of fossil fuels has caused increasingly climatic issues and energy crisis,which leads to the urgent demand for developing sustainable and clean energies.Electrocatalysts play a key role in the de...The rapid consumption of fossil fuels has caused increasingly climatic issues and energy crisis,which leads to the urgent demand for developing sustainable and clean energies.Electrocatalysts play a key role in the development of electrochemical energy conversion and storage devices.Especially,developing efficient and cost-effective catalysts is important for the large-scale application of these devices.Among various electrocatalyst candidates,earth abundant transition metal compound(TMC)-based electrocatalysts are being widely and rapidly studied owing to their high electrocatalytic performances.This paper reviews the recent and representative advances in efficient TMC-based electrocatalysts(i.e.,oxides,sulfides,selenides,phosphides,carbides and nitrides)for energy electrocatalytic reactions,including hydrogen evolution reaction(HER),oxygen evolution reaction(OER)and oxygen reduction reaction(ORR).Different compounds with different applications are summarized and the relative mechanisms are also discussed.The strategies for developing earth-abundant and low-cost TMC-based electrocatalysts are introduced.In the end,the current challenges and future perspectives in the development of TMC research are briefly discussed.This review also provides the latest advance and outlines the frontiers in TMC-based electrocatalysts,which should provide inspirations for the further development of low-cost and high-efficiency catalysts for sustainable clean energy technologies.展开更多
The activation of multisite high-entropy alloy(HEA)electrocatalysts is helpful for improving the atomic utilization of each metal in water electrolysis catalysis.Herein,well-dispersed HEA nanocrystals on Nrich graphen...The activation of multisite high-entropy alloy(HEA)electrocatalysts is helpful for improving the atomic utilization of each metal in water electrolysis catalysis.Herein,well-dispersed HEA nanocrystals on Nrich graphene with abundant M–pyridinic N–C bonds were synthesized through an ultrasonic-assisted confinement synthesis method.Operando Raman analysis and density functional theory calculations revealed that the electrocatalysts presented the optimal electronic rearrangement with fast ratedetermined H_(2)O dissociation kinetics and favorable H^(*)adsorption behavior that greatly enhanced hydrogen generation in alkaline electrolyte.A small overpotential of only 138.6 mV was required to obtain the current density of 100 mA cm^(-2) and the Tafel slope of as low as 33.0 mV dec^(-1),which was considerably smaller than the overpotentials of the counterpart with poor M–pyridinic N–C bonds(290.4 mV)and commercial Pt/C electrocatalysts(168.6 mV).The atomic structure,coordination environment,and electronic structure were clarified.This work provides a new avenue toward activating HEA as advanced electrocatalysts and promotes the research on HEA for energy-related electrolysis.展开更多
基金supported by the National Natural Science Foundation of China(No.52072226,U22A20144)Key Research and Development Program of Shaanxi(2024GX-YBXM-466)+1 种基金Science and Technology Program of Xi'an,China(22GXFW0013)Science and Technology Program of Weiyang District of Xi'an,China(202315)。
文摘Designing highly efficient Pt-free electrocatalysts with low overpotential for an alkaline hydrogen evolution reaction(HER)remains a significant challenge.Here,a novel and efficient cobalt(Co),ruthenium(Ru)bimetallic electrocatalyst composed of CoRu nanoalloy decorated on the N-doped carbon nanotubes(CoRu@N-CNTs),was prepared by reacting fullerenol with melamine via hydrothermal treatment and followed by pyrolysis.Benefiting from the electronic communication between Co and Ru sites,the as-obtained CoRu@N-CNTs catalyst exhibited superior electrocatalytic HER activity.To deliver a current density of 10 mA·cm^(-2),it required an overpotential of merely 19 mV along with a Tafel slope of 26.19 mV·dec^(-1)in 1 mol·L^(-1)potassium hydroxide(KOH)solution,outperforming the benchmark Pt/C catalyst.The present work would pave a new way towards the design and construction of an efficient electrocatalyst for energy storage and conversion.
文摘Proton exchange membrane fuel cells(PEMFCs)are considered ideal energy‐conversion devices because of their environmentally friendly nature and high theoretical energy efficiency.However,cathodic polarization,which is a result of the sluggish oxygen reduction reaction(ORR)kinetics,is a significant source of energy loss and reduces fuel cell efficiency.Further,the need to use Pt in commercial Pt/C cathodes has restricted their large‐scale application in fuel cells because of its high cost and poor durability.Thus,improvements in the activity and durability of Pt‐based catalyst are required to reduce the amount of Pt required and,thus,costs,while increasing the ORR rate and fuel cell power density and promoting widespread PEMFC commercialization.In recent years,atomically ordered Pt‐based intermetallic nanocrystals have received tremendous attention owing to their excellent activity and stability for the ORR.Therefore,in this review,we first introduce the formation of intermetallic compounds from the perspective of thermodynamics and kinetics to lay a theoretical foundation for the design of these compounds.In addition,optimization strategies for Pt‐based ordered intermetallic catalysts are summarized in terms of the catalyst composition,size,and morphology.Finally,we conclude with a discussion of the current challenges and future prospects of Pt‐based ordered alloys.This review is designed to help readers gain insights into the recent developments in and rational design of Pt‐based intermetallic nanocrystals for the ORR and encourage research that will enable the commercialization of PEMFCs.
文摘Epidemics are threatening public health and social development.Emerging as a green disinfectant,H_(2)O_(2)can prevent the breakout of epidemics in migration.Electrochemical H_(2)O_(2)production powered by renewable electricity provides a clean and decentralized solution for on-site disinfection.This review firstly discussed the efficacy of H_(2)O_(2)in disinfection.Then necessary fundamental principles are summarized to gain insight into electrochemical H_(2)O_(2)production.The focus is on exploring pathways to realize a highly efficient H_(2)O_(2)production.Progress in advanced electrocatalysts,typically single-atom catalysts for the two-electron oxygen reduction reaction(2e−ORR),are highlighted to provide high H_(2)O_(2)selectivity design strategies.Finally,a rational design of electrode and electrolytic cells is outlined to realize the on-site disinfection.Overall,this critical review contributes to exploiting the potentials and constraints of electrochemical H_(2)O_(2)generation in disinfection and pinpoints future research directions required for implementation.
文摘In this work,we have performed density functional theory(DFT)calculations to investigate the methanol electro‐oxidation reaction(MOR)catalyzed by the Pt,PtCu alloy and Cu.The complex reaction networks,including the intermediate dehydrogenation,water dissociation and anti‐poison reaction steps,are systematically investigated to explore the mechanisms.At the standard condition of pH=0 and zero potential,for Cu,most dehydrogenation steps along the favorable pathway are endergonic,making it less active in MOR.For the Pt and PtCu alloy,their dehydrogenation steps are mainly exergonic,but the formed CO intermediate binds too tightly on Pt,that can accumulate on active sites to poison the electro‐catalyst.The CO can be consumed by the thermodynamic reaction with OH*,which comes from water dissociation.DFT calculation shows alloying the Pt with Cu could not only reduce the free energy barrier for binding between CO*and OH*,but also assist the water dissociation to produce more OH*for that anti‐poison reaction.That makes the PtCu alloy more active than the pure Pt electrode in experiment.The results reveal the importance of anti‐poison reaction and water dissociation in MOR,which could be applied to the rational design of more active alloy electro‐catalysts in future.
基金supported by the National Natural Science Foundation of China(21773179,U1705251 and 21433007)the Natural Science Foundation of Hubei Province of China(2017CFA031)the Excellent Dissertation Cultivation Funds of Wuhan University of Technology(2016-YS-001)~~
文摘Exploring low-cost cocatalyst to take over noble metal cocatalyst is still challenging in the field of photocatalytic proton reduction.Herein,Ni-P alloy clusters are anchored onto the surface of polymeric carbon nitride through a chemical plating method and serve as highly efficient and stable cocatalyst toward photocatalytic proton reduction.An effective role in promoting the charge separation and migration of the photocatalytic system is demonstrated for Ni-P clusters,which essentially enhance the photocatalytic H2-production rate to a value of 1506μmol h^–1 g^–1.This performance is comparable to that of the benchmark of Pt-modified carbon nitride.This work highlights that the Ni-P alloy could be a potential alternative to noble metal cocatalyst in the photocatalytic reactions.
文摘Fuel cells have attracted extensive attention due to their high conversion efficiency and environmental friendliness.However,their wider application is limited by the poor activity and high cost of platinum(Pt),which is widely used as the cathode catalyst to overcome the slow kinetics associated with oxygen reduction reaction(ORR).Pt‐based composites with one‐dimensional(1D)nanoarchitectures demonstrate great advantages towards efficient ORR catalysis.This review focuses on the recent advancements in the design and synthesis of 1D Pt‐based ORR catalysts.After introducing the fundamental ORR mechanism and the advanced 1D architectures,their synthesis strategies(template‐based and template‐free methods)are discoursed.Subsequently,their morphology and structure optimization are highlighted,followed by the superstructure assembly using 1D Pt‐based blocks.Finally,the challenges and perspectives on the synthesis innovation,structure design,physical characterization,and theoretical investigations are proposed for 1D Pt‐based ORR nanocatalysts.We anticipate this study will inspire more research endeavors on efficient ORR nanocatalysts in fuel cell application.
文摘Polyethylene-nanocomposites with CaCO3-weight fractions from 0 to 15 wt.% were prepared by in-situ polymerization with Me2Si(Ind)2ZrC12/MAO metallocene catalysts. A high activity especially in the presence of TIBA was observed. The morphology was investigated by using raster electron microscopy (REM) showing that the CaCO3-nanoparticles are uniformly distributed. The melting temperatures and the crystallization temperatures are not much influenced by increasing filler content.
基金supported by the Australian Research Council Discovery Project(DP110100550)~~
文摘Water oxidation is one of the most attractive techniques for intermittent renewable energy conversion and storage.The oxygen evolution electrocatalytic performance of an amorphous Co-B alloy and its derivatives were studied.These materials were chemically synthesized by reducing a Co salt with NaBH4.The amorphous Co-B alloy showed good electrocatalytic activity in oxygen evolution but its stability was poor.A hydrotalcite‐wrapped Co-B alloy was synthesized by mild oxidation.The electrocatalytic activity of this material in the oxygen evolution reaction was better than that of a commercially available Ir/C catalyst.
基金the financial supports from the National Natural Science Foundation of China(Nos.52161040,51862026)the Natural Science Foundation of Jiangxi Province,China(Nos.20202ACBL214011,20192ACBL21048)the Aeronautical Science Foundation of China(No.2017ZF56027)。
文摘The Ni−MoO_(2) heterostructure was synthesized in suit on porous bulk NiMo alloy by a facile powder metallurgy and hydrothermal method.The results of field emission scanning electron microscopy(SEM),field emission transmission electron microscopy(TEM)and X-ray photoelectron spectroscopy(XPS)reveal that the as-prepared electrode possesses the heterostructure and a layer of Ni(OH)_(2) nanosheets is formed on the surface of Ni−MoO_(2) electrode simultaneously after hydrothermal treatment,which provides abundant interface and much active sites,as well as much active specific surface area.The results of hydrogen evolution reaction indicate that the Ni−MoO_(2) heterostructure electrode exhibits excellent catalytic performance,requiring only 41 mV overpotential to reach the current density of 10 mA/cm^(2).It also possesses a small Tafel slope of 52.7 mV/dec and long-term stability of electrolysis in alkaline medium.
基金supported by the National Basic Research Program of China(973 Program,2015CB932303)the National Natural Science Foundation of China(NSFC)(21733004 and 21473039)the International Cooperation Program of Shanghai Science and Technology Committee(STCSM)(17520711200)~~
文摘Carbon supported Pt-Co alloys are among the most promising electrocatalysts towards oxygen reduction reaction(ORR)for the application in low temperature fuel cells and beyond,thus their facile and green synthesis is highly demanded.Herein we initially report an alternate aqueous phase one-pot synthesis of such catalysts(containing nominally ca.20 wt.%Pt)based on dimethylamine borane(DMAB)reduction.The as-obtained electrocatalyst(denoted as Pt3Co/C-DMAB)is compared with the ones obtained by NaBH4 and N2H4·H2O reduction(denoted as Pt3Co/C-NaBH4 and Pt3Co/C-N2H4·H2O,respectively)as well as a commercial Pt/C,in terms of the structure and electrocatalytic property.It turns out that Pt3Co/C-DMAB exhibits the highest ORR performance among all the tested samples in an O2-saturated 0.1 mol/L HClO4,with the mass activity(specific activity)ca.4(6)times as large as that for Pt/C.After 10000 cycles of the accelerated degradation test,the half-wave potential for ORR on Pt3Co/C-DMAB decreases only by 4 mV,in contrast to 24 mV for that on Pt/C.Pt3Co/C-NaBH4 or Pt3Co/C-N2H4·H2O shows a specific activity comparable to that for Pt3Co/C-DMAB,but a mass activity similar to that for Pt/C.ICP-AES,TEM,XRD and XPS characterizations indicate that Pt3Co nanoparticles are well-dispersed and alloyed with a mean particle size of ca.3.4±0.4 nm,contributing to the prominent electrocatalytic performance of Pt3Co/C-DMAB.This simple aqueous synthetic route may provide an alternate opportunity for developing efficient practical electrocatalysts for ORR.
文摘In recent years, the scale of use of fuel cells (FCs) has been increasing continuously. One of the essential elements that affect their work is a catalyst. Precious metals (mainly platinum) are known for their high efficiency as FC catalysts. However, their high cost holds back the FCs from application on a large scale. Therefore, catalysts that do not contain precious metals are sought. Studies are focused mainly on the search for fuel electrode catalysts, but for the efficiency of FCs also the oxygen electrode catalyst is of great significance. The paper presents an analysis of the possibilitiesof using Ni-Co alloy as a catalyst for the oxygen electrode of the FC.
文摘Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient energy storage. Nickel/iron (NiFe)-based compounds have been known as active OER catalysts since the last century, and renewed interest has been witnessed in recent years on developing advanced NiFe-based materials for better activity and stability. In this review, we present the early discovery and recent progress on NiFe-based OER electrocatalysts in terms of chemical properties, synthetic methodologies and catalytic performances. The advantages and disadvantages of each class of NiFe-based compounds are summarized, including NiFe alloys, electrodeposited films and layered double hydroxide nanoplates. Some mechanistic studies of the active phase of NiFe-based compounds are introduced and discussed to give insight into the nature of active catalytic sites, which could facilitate further improving NiFe based OER electrocatalysts. Finally, some applications of NiFe- based compounds for OER are described, including the development of an electrolyzer operating with a single AAA battery with voltage below 1.5 V and high performance rechargeable Zn-air batteries.
基金supported by the National Natural Science Foundation of China(51804216 and 51972224)the Young Elite Scientists Sponsorship Program by CAST(2018QNRC001)+1 种基金Tianjin Natural Science Foundation(17JCQNJC02100)support from China Postdoctoral Science Foundation(2019M661014)。
文摘The rapid consumption of fossil fuels has caused increasingly climatic issues and energy crisis,which leads to the urgent demand for developing sustainable and clean energies.Electrocatalysts play a key role in the development of electrochemical energy conversion and storage devices.Especially,developing efficient and cost-effective catalysts is important for the large-scale application of these devices.Among various electrocatalyst candidates,earth abundant transition metal compound(TMC)-based electrocatalysts are being widely and rapidly studied owing to their high electrocatalytic performances.This paper reviews the recent and representative advances in efficient TMC-based electrocatalysts(i.e.,oxides,sulfides,selenides,phosphides,carbides and nitrides)for energy electrocatalytic reactions,including hydrogen evolution reaction(HER),oxygen evolution reaction(OER)and oxygen reduction reaction(ORR).Different compounds with different applications are summarized and the relative mechanisms are also discussed.The strategies for developing earth-abundant and low-cost TMC-based electrocatalysts are introduced.In the end,the current challenges and future perspectives in the development of TMC research are briefly discussed.This review also provides the latest advance and outlines the frontiers in TMC-based electrocatalysts,which should provide inspirations for the further development of low-cost and high-efficiency catalysts for sustainable clean energy technologies.
基金supported by the National Natural Science Foundation of China(21838003,51621002)the Innovation Program of Shanghai Municipal Education Commissionthe Fundamental Research Funds for the Central Universities。
文摘The activation of multisite high-entropy alloy(HEA)electrocatalysts is helpful for improving the atomic utilization of each metal in water electrolysis catalysis.Herein,well-dispersed HEA nanocrystals on Nrich graphene with abundant M–pyridinic N–C bonds were synthesized through an ultrasonic-assisted confinement synthesis method.Operando Raman analysis and density functional theory calculations revealed that the electrocatalysts presented the optimal electronic rearrangement with fast ratedetermined H_(2)O dissociation kinetics and favorable H^(*)adsorption behavior that greatly enhanced hydrogen generation in alkaline electrolyte.A small overpotential of only 138.6 mV was required to obtain the current density of 100 mA cm^(-2) and the Tafel slope of as low as 33.0 mV dec^(-1),which was considerably smaller than the overpotentials of the counterpart with poor M–pyridinic N–C bonds(290.4 mV)and commercial Pt/C electrocatalysts(168.6 mV).The atomic structure,coordination environment,and electronic structure were clarified.This work provides a new avenue toward activating HEA as advanced electrocatalysts and promotes the research on HEA for energy-related electrolysis.