Status of organic carbon (C), total nitrogen (N), available potassium (K), calcium (Ca) and phosphorus (P) in three different depths (0-5 cm, 5-15 cm and 15?30 cm) on two hill slopes of 35% and 55% in orange orchard c...Status of organic carbon (C), total nitrogen (N), available potassium (K), calcium (Ca) and phosphorus (P) in three different depths (0-5 cm, 5-15 cm and 15?30 cm) on two hill slopes of 35% and 55% in orange orchard cultivated by the Mro tribe of Chittagong Hill Tracts (CHTs) were evaluated and compared with those in degraded bush forests, through digging three profiles in each land use. The content of all the five nutrients was found to be higher in the soil of orange orchard than in the soil of forest. But the variation was not consistent for both the slopes. The content varied depth wise also, having the highest value in surface soil in case of both the land uses on both the slopes. A mean available K content was significantly higher in orange orchard than in forest on 55% slope, while it was lower on 35% slope. Surface soil contained the nutrients of K and Ca with the amount of 0.2905-mg·g^(-1) soil and 3.025-mg·g^(-1)soil respectively in the orchard, while 0.1934-mg·g^(-1) soil and 1.6083-mg·g^(-1) soil were respectively in the forest. Organic carbon and total nitrogen were found more or less similar in surface soil on both the land uses showing a slight difference. Available P was found only in orange orchard, and in forest it was too little in amount to detect by the spectrophotometer. The degraded forests were poor in nutrient content due to high rate of soil erosion, which would be possible to be improved by bringing it under tree cover as proved by the adaptation of orange orchard there.展开更多
A study was conducted at two pair sites of Chittagong Hill Tracts in Bangladesh to find out the effects of shifting cultivation on soil fungi and bacterial population. The first pair of sites with shifting culti-vatio...A study was conducted at two pair sites of Chittagong Hill Tracts in Bangladesh to find out the effects of shifting cultivation on soil fungi and bacterial population. The first pair of sites with shifting culti-vation and village common forest-managed by indigenous community was at Madhya Para in Rangamati district and the second pair of sites with the shifting cultivated land and village common forest at Ampu Para in Bandarban district of Chittagong Hill Tracts. At both the locations with two different land uses, soil textures in surface (0?10 cm) and sub-surface (10?20 cm) soils varied from sandy loam to sandy clay loam. Soil pH and moisture content were lower in shifting cultivated land com-pared to village common forest. The results also showed that both fungal and bacterial population in surface and subsurface soils was significantly (p ≤ 0.05) lower, in most cases, in shifting cultivated land compared to village common forest at both Madhya Para and Ampu Para. At Ranga-mati and Bandarban in shifting cultivated lands, Colletrotrichum and Fusarium fungi were absent and all the bacterial genus viz. Coccus, Bacillus and Streptococcus common in two different locations with dif-ferent land uses. Common identified fungi at both the land uses and locations were Aspergillus, Rhizopus, Trichoderma and Penicillium. Further study can be done on the other soil biota to understand the extent of environmental deterioration due to shifting cultivation.展开更多
文摘Status of organic carbon (C), total nitrogen (N), available potassium (K), calcium (Ca) and phosphorus (P) in three different depths (0-5 cm, 5-15 cm and 15?30 cm) on two hill slopes of 35% and 55% in orange orchard cultivated by the Mro tribe of Chittagong Hill Tracts (CHTs) were evaluated and compared with those in degraded bush forests, through digging three profiles in each land use. The content of all the five nutrients was found to be higher in the soil of orange orchard than in the soil of forest. But the variation was not consistent for both the slopes. The content varied depth wise also, having the highest value in surface soil in case of both the land uses on both the slopes. A mean available K content was significantly higher in orange orchard than in forest on 55% slope, while it was lower on 35% slope. Surface soil contained the nutrients of K and Ca with the amount of 0.2905-mg·g^(-1) soil and 3.025-mg·g^(-1)soil respectively in the orchard, while 0.1934-mg·g^(-1) soil and 1.6083-mg·g^(-1) soil were respectively in the forest. Organic carbon and total nitrogen were found more or less similar in surface soil on both the land uses showing a slight difference. Available P was found only in orange orchard, and in forest it was too little in amount to detect by the spectrophotometer. The degraded forests were poor in nutrient content due to high rate of soil erosion, which would be possible to be improved by bringing it under tree cover as proved by the adaptation of orange orchard there.
基金This study was supported by United States Depart-ment of Agriculture (USDA), Grant No.: BG-ARS-123
文摘A study was conducted at two pair sites of Chittagong Hill Tracts in Bangladesh to find out the effects of shifting cultivation on soil fungi and bacterial population. The first pair of sites with shifting culti-vation and village common forest-managed by indigenous community was at Madhya Para in Rangamati district and the second pair of sites with the shifting cultivated land and village common forest at Ampu Para in Bandarban district of Chittagong Hill Tracts. At both the locations with two different land uses, soil textures in surface (0?10 cm) and sub-surface (10?20 cm) soils varied from sandy loam to sandy clay loam. Soil pH and moisture content were lower in shifting cultivated land com-pared to village common forest. The results also showed that both fungal and bacterial population in surface and subsurface soils was significantly (p ≤ 0.05) lower, in most cases, in shifting cultivated land compared to village common forest at both Madhya Para and Ampu Para. At Ranga-mati and Bandarban in shifting cultivated lands, Colletrotrichum and Fusarium fungi were absent and all the bacterial genus viz. Coccus, Bacillus and Streptococcus common in two different locations with dif-ferent land uses. Common identified fungi at both the land uses and locations were Aspergillus, Rhizopus, Trichoderma and Penicillium. Further study can be done on the other soil biota to understand the extent of environmental deterioration due to shifting cultivation.