The control method of rubber tyre gantry (RTG) spreader in Qingdao Port Container Terminal is logic board control,which has many shortcomings such as expensive spare parts and high faults.This paper designs a new co...The control method of rubber tyre gantry (RTG) spreader in Qingdao Port Container Terminal is logic board control,which has many shortcomings such as expensive spare parts and high faults.This paper designs a new control system using programmable logic controller (PLC) centralized control to replace the original logic board control.The new system mainly contains complete ELME spreader control scheme design,hardware selection and PLC control program development.Its field application shows that the system has characteristics of high efficiency,low running cost,easy maintenance.展开更多
A robust anti-swing control method based on the error transformation function is proposed,and the problem is handled for the unmanned helicopter slung-load system(HSLS)deviating from the equilibrium state due to the d...A robust anti-swing control method based on the error transformation function is proposed,and the problem is handled for the unmanned helicopter slung-load system(HSLS)deviating from the equilibrium state due to the disturbances in the lifting process.First,the nonlinear model of unmanned HSLS is established.Second,the errors of swing angles are constructed by using the two ideal swing angle values and the actual swing angle values for the unmanned HSLS under flat flight,and the error transformation functions are investigated to guarantee that the errors of swing angles satisfy the prescribed performance.Third,the nonlinear disturbance observers are introduced to estimate the bounded disturbances,and the robust controllers of the unmanned HSLS,the velocity and the attitude subsystems are designed based on the prescribed performance method,the output of disturbance observer and the sliding mode backstepping strategy,respectively.Fourth,the Lyapunov function is developed to prove the stability of the closed-loop system.Finally,the simulation studies are shown to demonstrate the effectiveness of the control strategy.展开更多
This paper aims to address the problem of geometric state control of large-segment steel box girders in offshore hoisting during the construction of large-span bridges. First, the geometric state control indexes of a ...This paper aims to address the problem of geometric state control of large-segment steel box girders in offshore hoisting during the construction of large-span bridges. First, the geometric state control indexes of a large-segment steel box girder are determined, such as the manufacturing parameters of the top and bottom slabs, the width of the annular joint, and the support position. Second, the geometric state equations and state transfer matrixes of large-segment steel box girders under different conditions are deduced by taking the mileage and elevation of control points as basic state variables. In application of the geometric state transfer method in the construction control of the Hong Kong-Zhuhai-Macao Bridge, the width of the annular joint and the position parameters for the support of the large-segment steel box girder are predicted precisely. Moreover, the manufacturing parameters of the top and bottom slabs of the steel box girders are calculated reliably. The measured values show that the width of the annular joint is basically the same with the difference of less than 2 mm, the eccentricity of bridge support is less than 20 mm, and the elevation error of the bridge deck is within-10 mm to +15 mm, which meets the construction accuracy. Using the geometric state transfer method, the rapid and accurate installation of the Hong Kong-Zhuhai-Macao Bridge has been realized, demonstrating that the precise control of the geometric state of a steel box girder with ectopic installation and multi-state transition can be realized by using the geometric state transfer method.展开更多
基金Shandong University of Science and Technology Spring Buds Program(No.2010AZZ170)
文摘The control method of rubber tyre gantry (RTG) spreader in Qingdao Port Container Terminal is logic board control,which has many shortcomings such as expensive spare parts and high faults.This paper designs a new control system using programmable logic controller (PLC) centralized control to replace the original logic board control.The new system mainly contains complete ELME spreader control scheme design,hardware selection and PLC control program development.Its field application shows that the system has characteristics of high efficiency,low running cost,easy maintenance.
基金This work was supported in part by the National Natural Science Foundation of China(No.62003163)the National Science Fund for the Key R&D projects(Social Development)in Jiangsu Province of China(No.BE2020704)+3 种基金the Aeronautical Science Foundation of China(Nos.201957052001,20200007052001)the Jiangsu Province“333”project(No.BRA2019051)the Postdoctoral Research Foundation of Jiangsu Province(No.2020Z112)the Natural Science Foundation of Jiangsu Province for Young Scholars(No.BK20200415)。
文摘A robust anti-swing control method based on the error transformation function is proposed,and the problem is handled for the unmanned helicopter slung-load system(HSLS)deviating from the equilibrium state due to the disturbances in the lifting process.First,the nonlinear model of unmanned HSLS is established.Second,the errors of swing angles are constructed by using the two ideal swing angle values and the actual swing angle values for the unmanned HSLS under flat flight,and the error transformation functions are investigated to guarantee that the errors of swing angles satisfy the prescribed performance.Third,the nonlinear disturbance observers are introduced to estimate the bounded disturbances,and the robust controllers of the unmanned HSLS,the velocity and the attitude subsystems are designed based on the prescribed performance method,the output of disturbance observer and the sliding mode backstepping strategy,respectively.Fourth,the Lyapunov function is developed to prove the stability of the closed-loop system.Finally,the simulation studies are shown to demonstrate the effectiveness of the control strategy.
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China(No.LZ16E080001)the National Natural Science Foundation of China(Nos.51578496 and 51878603)。
文摘This paper aims to address the problem of geometric state control of large-segment steel box girders in offshore hoisting during the construction of large-span bridges. First, the geometric state control indexes of a large-segment steel box girder are determined, such as the manufacturing parameters of the top and bottom slabs, the width of the annular joint, and the support position. Second, the geometric state equations and state transfer matrixes of large-segment steel box girders under different conditions are deduced by taking the mileage and elevation of control points as basic state variables. In application of the geometric state transfer method in the construction control of the Hong Kong-Zhuhai-Macao Bridge, the width of the annular joint and the position parameters for the support of the large-segment steel box girder are predicted precisely. Moreover, the manufacturing parameters of the top and bottom slabs of the steel box girders are calculated reliably. The measured values show that the width of the annular joint is basically the same with the difference of less than 2 mm, the eccentricity of bridge support is less than 20 mm, and the elevation error of the bridge deck is within-10 mm to +15 mm, which meets the construction accuracy. Using the geometric state transfer method, the rapid and accurate installation of the Hong Kong-Zhuhai-Macao Bridge has been realized, demonstrating that the precise control of the geometric state of a steel box girder with ectopic installation and multi-state transition can be realized by using the geometric state transfer method.