An extended Kalman filter approach of simultaneous localization and mapping(SLAM) was proposed based on local maps. A local frame of reference was established periodically at the position of the robot, and then the ob...An extended Kalman filter approach of simultaneous localization and mapping(SLAM) was proposed based on local maps. A local frame of reference was established periodically at the position of the robot, and then the observations of the robot and landmarks were fused into the global frame of reference. Because of the independence of the local map, the approach does not cumulate the estimate and calculation errors which are produced by SLAM using Kalman filter directly. At the same time, it reduces the computational complexity. This method is proven correct and feasible in simulation experiments.展开更多
In order to effectively reduce the uncertainty error of mobile robot localization with a single sensor and improve the accuracy and robustness of robot localization and mapping,a mobile robot localization algorithm ba...In order to effectively reduce the uncertainty error of mobile robot localization with a single sensor and improve the accuracy and robustness of robot localization and mapping,a mobile robot localization algorithm based on multi-sensor information fusion(MSIF)was proposed.In this paper,simultaneous localization and mapping(SLAM)was realized on the basis of laser Rao-Blackwellized particle filter(RBPF)-SLAM algorithm and graph-based optimization theory was used to constrain and optimize the pose estimation results of Monte Carlo localization.The feature point extraction and quadrilateral closed loop matching algorithm based on oriented FAST and rotated BRIEF(ORB)were improved aiming at the problems of generous calculation and low tracking accuracy in visual information processing by means of the three-dimensional(3D)point feature in binocular visual reconstruction environment.Factor graph model was used for the information fusion under the maximum posterior probability criterion for laser RBPF-SLAM localization and binocular visual localization.The results of simulation and experiment indicate that localization accuracy of the above-mentioned method is higher than that of traditional RBPF-SLAM algorithm and general improved algorithms,and the effectiveness and usefulness of the proposed method are verified.展开更多
Mobile robot navigation in unknown environment is an advanced research hotspot.Simultaneous localization and mapping(SLAM)is the key requirement for mobile robot to accomplish navigation.Recently,many researchers stud...Mobile robot navigation in unknown environment is an advanced research hotspot.Simultaneous localization and mapping(SLAM)is the key requirement for mobile robot to accomplish navigation.Recently,many researchers study SLAM by using laser scanners,sonar,camera,etc.This paper proposes a method that consists of a Kinect sensor along with a normal laptop to control a small mobile robot for collecting information and building a global map of an unknown environment on a remote workstation.The information(depth data)is communicated wirelessly.Gmapping(a highly efficient Rao-Blackwellized particle filer to learn grid maps from laser range data)parameters have been optimized to improve the accuracy of the map generation and the laser scan.Experiment is performed on Turtlebot to verify the effectiveness of the proposed method.展开更多
An unmanned aerial vehicle (UAV) is arranged to explore an unknown environment and to map the features it finds when GPS is denied.It navigates using a statistical estimation technique known as simultaneous localiza...An unmanned aerial vehicle (UAV) is arranged to explore an unknown environment and to map the features it finds when GPS is denied.It navigates using a statistical estimation technique known as simultaneous localization and mapping (SLAM) which allows for the simultaneous estimation of the location of the UAV as well as the location of the features it sees.Obscrvability is a key aspect of the state estimation problem of SLAM.However,the dimension and variables of SLAM system might be changed with new features.To solve this issue,a unified approach of observability analysis for SLAM system is provided,through reorganizing the system model.The dimension and variables of SLAM system keep steady,then the PWCS theory can be used to analyze the local or total observability,and under special maneuver,some system states,such as the yaw angle,become observable.Simulation results validate the proposed method.展开更多
基金Project(60234030) supported by the National Natural Science Foundation of China project(A1420060159) supported by the National Basic Research
文摘An extended Kalman filter approach of simultaneous localization and mapping(SLAM) was proposed based on local maps. A local frame of reference was established periodically at the position of the robot, and then the observations of the robot and landmarks were fused into the global frame of reference. Because of the independence of the local map, the approach does not cumulate the estimate and calculation errors which are produced by SLAM using Kalman filter directly. At the same time, it reduces the computational complexity. This method is proven correct and feasible in simulation experiments.
基金Natural Science Foundation of Shaanxi Province(No.2019JQ-004)Scientific Research Plan Projects of Shaanxi Education Department(No.18JK0438)Youth Talent Promotion Project of Shaanxi Province(No.20180112)。
文摘In order to effectively reduce the uncertainty error of mobile robot localization with a single sensor and improve the accuracy and robustness of robot localization and mapping,a mobile robot localization algorithm based on multi-sensor information fusion(MSIF)was proposed.In this paper,simultaneous localization and mapping(SLAM)was realized on the basis of laser Rao-Blackwellized particle filter(RBPF)-SLAM algorithm and graph-based optimization theory was used to constrain and optimize the pose estimation results of Monte Carlo localization.The feature point extraction and quadrilateral closed loop matching algorithm based on oriented FAST and rotated BRIEF(ORB)were improved aiming at the problems of generous calculation and low tracking accuracy in visual information processing by means of the three-dimensional(3D)point feature in binocular visual reconstruction environment.Factor graph model was used for the information fusion under the maximum posterior probability criterion for laser RBPF-SLAM localization and binocular visual localization.The results of simulation and experiment indicate that localization accuracy of the above-mentioned method is higher than that of traditional RBPF-SLAM algorithm and general improved algorithms,and the effectiveness and usefulness of the proposed method are verified.
基金National Natural Science Foundation of China(Nos.51475328,61372143,61671321)
文摘Mobile robot navigation in unknown environment is an advanced research hotspot.Simultaneous localization and mapping(SLAM)is the key requirement for mobile robot to accomplish navigation.Recently,many researchers study SLAM by using laser scanners,sonar,camera,etc.This paper proposes a method that consists of a Kinect sensor along with a normal laptop to control a small mobile robot for collecting information and building a global map of an unknown environment on a remote workstation.The information(depth data)is communicated wirelessly.Gmapping(a highly efficient Rao-Blackwellized particle filer to learn grid maps from laser range data)parameters have been optimized to improve the accuracy of the map generation and the laser scan.Experiment is performed on Turtlebot to verify the effectiveness of the proposed method.
基金Project(2020203)supported by the Weapon Research Foundation,China
文摘An unmanned aerial vehicle (UAV) is arranged to explore an unknown environment and to map the features it finds when GPS is denied.It navigates using a statistical estimation technique known as simultaneous localization and mapping (SLAM) which allows for the simultaneous estimation of the location of the UAV as well as the location of the features it sees.Obscrvability is a key aspect of the state estimation problem of SLAM.However,the dimension and variables of SLAM system might be changed with new features.To solve this issue,a unified approach of observability analysis for SLAM system is provided,through reorganizing the system model.The dimension and variables of SLAM system keep steady,then the PWCS theory can be used to analyze the local or total observability,and under special maneuver,some system states,such as the yaw angle,become observable.Simulation results validate the proposed method.