Defect engineering has become a promising approach to improve the performance of hydrogen evolution reaction(HER)catalysts.Non-noble transition metal-based catalysts(TMCs)have shown significant promise as effective al...Defect engineering has become a promising approach to improve the performance of hydrogen evolution reaction(HER)catalysts.Non-noble transition metal-based catalysts(TMCs)have shown significant promise as effective alternatives to traditional platinum-group catalysts,attracting considerable attention.However,the industrial application of TMCs in electrocatalytic hydrogen production necessitates further optimization to boost both catalytic activity and stability.This review comprehensively examines the types,fabrication methods,and characterization techniques of various defects that enhance catalytic HER activity.Key advancements include optimizing defect concentration and distribution,coupling heteroatoms with vacancies,and leveraging the synergy between bond lengths and defects.In-depth discussions highlight the electronic structure and catalytic mechanisms elucidated through in-situ characterization and density functional theory calculations.Additionally,future directions are identified,exploring novel defect types,emphasizing precision synthesis methods,industrial-scale preparation techniques,and strategies to enhance structural stability and understanding the in-depth catalytic mechanism.This review aims to inspire further research and development in defect-engineered HER catalysts,providing pathways for high efficiency and cost-effectiveness in hydrogen production.展开更多
The chemical transformation of CO2under mild conditions remains a great challenge because of itsexceptional kinetic and thermodynamic stability.Two important reactions in the transformation ofCO2are the N‐formylation...The chemical transformation of CO2under mild conditions remains a great challenge because of itsexceptional kinetic and thermodynamic stability.Two important reactions in the transformation ofCO2are the N‐formylation reaction of amines using hydrosilanes and CO2,and the cycloaddition ofCO2to epoxides.Here,we report the high efficiency of bifunctional metallosalen complexes bearingquaternary phosphonium salts in catalyzing both of these reactions under solvent‐free,mild conditionswithout the need for co‐catalysts.The catalysts’bifunctionality is attributed to an intramolecularcooperative process between the metal center and the halogen anion.Depending on the reaction,this activates CO2by permitting either the synergistic activation of Si–H bond via metal–hydrogen coordinative bond(M–H)or the dual activation of epoxide via metal–oxygen coordinativebond(M–O).The one‐component catalysts are also shown to be easily recovered and reusedfive times without significant loss of activity or selectivity.The current results are combined withprevious work in the area to propose the relevant reaction mechanisms.展开更多
Accurate estimation of evapotranspiration(ET),especially at the regional scale,is an extensively investigated topic in the field of water science. The ability to obtain a continuous time series of highly precise ET va...Accurate estimation of evapotranspiration(ET),especially at the regional scale,is an extensively investigated topic in the field of water science. The ability to obtain a continuous time series of highly precise ET values is necessary for improving our knowledge of fundamental hydrological processes and for addressing various problems regarding the use of water. This objective can be achieved by means of ET data assimilation based on hydrological modeling. In this paper,a comprehensive review of ET data assimilation based on hydrological modeling is provided. The difficulties and bottlenecks of using ET,being a non-state variable,to construct data assimilation relationships are elaborated upon,with a discussion and analysis of the feasibility of assimilating ET into various hydrological models. Based on this,a new easy-to-operate ET assimilation scheme that includes a water circulation physical mechanism is proposed. The scheme was developed with an improved data assimilation system that uses a distributed time-variant gain model(DTVGM),and the ET-soil humidity nonlinear time response relationship of this model. Moreover,the ET mechanism in the DTVGM was improved to perfect the ET data assimilation system. The new scheme may provide the best spatial and temporal characteristics for hydrological states,and may be referenced for accurate estimation of regional evapotranspiration.展开更多
Herein,a unique nanohybrid foam was fabricated with titanium dioxide(TiO2)-carbon quantum dots(CQDs)nanoparticles intercalated between graphene oxide(GO)layers via a facile and low-cost solvothermal method.Compared wi...Herein,a unique nanohybrid foam was fabricated with titanium dioxide(TiO2)-carbon quantum dots(CQDs)nanoparticles intercalated between graphene oxide(GO)layers via a facile and low-cost solvothermal method.Compared with pure GO foam,the fabricated GO-TiO2-CQDs foam displayed high degradation rate towards methyl orange(MO),methylene blue(MB),and rhodamine B(Rh B),respectively,under the Xenon lamp irradiation.The composite foam can be used for several times and remain a high degradation rate without structural damage.The photochemical property was attributed to the 3D porous structure of GOTiO2-CQDs foam,in which ultrafine hydrogenated TiO2-CQDs nanoparticles were densely anchored on the GO sheets.This paper provides an efficient strategy to tune the charge transport and thus enhance the photocatalytic performance by combining the semi-conductive GO and quantum dots.展开更多
文摘Defect engineering has become a promising approach to improve the performance of hydrogen evolution reaction(HER)catalysts.Non-noble transition metal-based catalysts(TMCs)have shown significant promise as effective alternatives to traditional platinum-group catalysts,attracting considerable attention.However,the industrial application of TMCs in electrocatalytic hydrogen production necessitates further optimization to boost both catalytic activity and stability.This review comprehensively examines the types,fabrication methods,and characterization techniques of various defects that enhance catalytic HER activity.Key advancements include optimizing defect concentration and distribution,coupling heteroatoms with vacancies,and leveraging the synergy between bond lengths and defects.In-depth discussions highlight the electronic structure and catalytic mechanisms elucidated through in-situ characterization and density functional theory calculations.Additionally,future directions are identified,exploring novel defect types,emphasizing precision synthesis methods,industrial-scale preparation techniques,and strategies to enhance structural stability and understanding the in-depth catalytic mechanism.This review aims to inspire further research and development in defect-engineered HER catalysts,providing pathways for high efficiency and cost-effectiveness in hydrogen production.
基金supported by the National Natural Science Foundation of China (21676306,21425627)the National Key Research and Development Program of China (2016YFA0602900)the Natural Science Foundation of Guangdong Province (2016A030310211,2015A030313104)~~
文摘The chemical transformation of CO2under mild conditions remains a great challenge because of itsexceptional kinetic and thermodynamic stability.Two important reactions in the transformation ofCO2are the N‐formylation reaction of amines using hydrosilanes and CO2,and the cycloaddition ofCO2to epoxides.Here,we report the high efficiency of bifunctional metallosalen complexes bearingquaternary phosphonium salts in catalyzing both of these reactions under solvent‐free,mild conditionswithout the need for co‐catalysts.The catalysts’bifunctionality is attributed to an intramolecularcooperative process between the metal center and the halogen anion.Depending on the reaction,this activates CO2by permitting either the synergistic activation of Si–H bond via metal–hydrogen coordinative bond(M–H)or the dual activation of epoxide via metal–oxygen coordinativebond(M–O).The one‐component catalysts are also shown to be easily recovered and reusedfive times without significant loss of activity or selectivity.The current results are combined withprevious work in the area to propose the relevant reaction mechanisms.
基金National Key Basic Research Program of China(973 Program),No.2015CB452701National Natural Science Foundation of China,No.41271003+1 种基金No.41371043No.41401042
文摘Accurate estimation of evapotranspiration(ET),especially at the regional scale,is an extensively investigated topic in the field of water science. The ability to obtain a continuous time series of highly precise ET values is necessary for improving our knowledge of fundamental hydrological processes and for addressing various problems regarding the use of water. This objective can be achieved by means of ET data assimilation based on hydrological modeling. In this paper,a comprehensive review of ET data assimilation based on hydrological modeling is provided. The difficulties and bottlenecks of using ET,being a non-state variable,to construct data assimilation relationships are elaborated upon,with a discussion and analysis of the feasibility of assimilating ET into various hydrological models. Based on this,a new easy-to-operate ET assimilation scheme that includes a water circulation physical mechanism is proposed. The scheme was developed with an improved data assimilation system that uses a distributed time-variant gain model(DTVGM),and the ET-soil humidity nonlinear time response relationship of this model. Moreover,the ET mechanism in the DTVGM was improved to perfect the ET data assimilation system. The new scheme may provide the best spatial and temporal characteristics for hydrological states,and may be referenced for accurate estimation of regional evapotranspiration.
基金supported by the National Natural Science Foundation of China (NSFC, 51573013 and 51873016)the Open Project Program of Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University (QETHSP2019006)
文摘Herein,a unique nanohybrid foam was fabricated with titanium dioxide(TiO2)-carbon quantum dots(CQDs)nanoparticles intercalated between graphene oxide(GO)layers via a facile and low-cost solvothermal method.Compared with pure GO foam,the fabricated GO-TiO2-CQDs foam displayed high degradation rate towards methyl orange(MO),methylene blue(MB),and rhodamine B(Rh B),respectively,under the Xenon lamp irradiation.The composite foam can be used for several times and remain a high degradation rate without structural damage.The photochemical property was attributed to the 3D porous structure of GOTiO2-CQDs foam,in which ultrafine hydrogenated TiO2-CQDs nanoparticles were densely anchored on the GO sheets.This paper provides an efficient strategy to tune the charge transport and thus enhance the photocatalytic performance by combining the semi-conductive GO and quantum dots.