First it is proved that both the integral of the divergence and the Melnikov function are invariants of the C2 transformation. Then, the problem of the planar homoclinic bifurcation with codimension 3 is considered. I...First it is proved that both the integral of the divergence and the Melnikov function are invariants of the C2 transformation. Then, the problem of the planar homoclinic bifurcation with codimension 3 is considered. It is proved that, in a small neighborhood of the origin in the parameter space of a Cr (r≥5) system, there exist exactly two Cr-1 semi- stable- limit- cycle branching surfaces, and their common boundary is a unique Cr-1 three-multiple- limit-cycle branching curve. The bifurcation pictures and the asymptotic expansions of the bifurcation functions are given. The stability criterion for the homoclinic loop is also obtained when the integral of the divergence is zero. The proof of the auxiliary theorems will be presented in [16].展开更多
文摘First it is proved that both the integral of the divergence and the Melnikov function are invariants of the C2 transformation. Then, the problem of the planar homoclinic bifurcation with codimension 3 is considered. It is proved that, in a small neighborhood of the origin in the parameter space of a Cr (r≥5) system, there exist exactly two Cr-1 semi- stable- limit- cycle branching surfaces, and their common boundary is a unique Cr-1 three-multiple- limit-cycle branching curve. The bifurcation pictures and the asymptotic expansions of the bifurcation functions are given. The stability criterion for the homoclinic loop is also obtained when the integral of the divergence is zero. The proof of the auxiliary theorems will be presented in [16].