From the mechanical similarity point of view, the centrifugal effect, Ar, and the Stokes number, St, as well as the Reynolds number, Re_c for the motion of solid particles in the cyclone are the relevant parameters. I...From the mechanical similarity point of view, the centrifugal effect, Ar, and the Stokes number, St, as well as the Reynolds number, Re_c for the motion of solid particles in the cyclone are the relevant parameters. In order to apply these similarity laws for the prediction of the characteristics of the collection efficiency, ηc, geometrically similar types of uni-flow cyclones were used. The body diameters of the cyclones were D_1=30, 50, 69 and 99 mm, respectively. The feed particle concentration of the fly-ash particles was up to C_o = 60g/m^3. From the experimental results: (1) the pressure drop, △pc, in the cyclones was a function of not only the Reynods number, Re_c, but also the body diameter, D_1; (2) the collection efficiency, η_c, did not always increase with decreasing body diameter but there existed an optimal body size; (3) application of the mechanical similarity laws to the collection efficiency was not always sufficient for estimating the collection efficiency, since the feed particle concentration was an additional important factor; (4) a new parameter which was the ratio, E_(pf), of the apparent separation energy, W_p, of the solid particles to the energy loss, E_c, of the gas flow in the cyclone was introduced for discussing the collection efficiency; (5) Fuchs theory, used to estimate the collection efficiency, was examined. Fuchs theory may be applied for high feed particle concentration.展开更多
The North China and the neighbouring Mongolia in Asian Interior is characterized by extremely dry climate, resulted in one of the world's major dust emission centres. Deciphering the source region of Asian dust is cr...The North China and the neighbouring Mongolia in Asian Interior is characterized by extremely dry climate, resulted in one of the world's major dust emission centres. Deciphering the source region of Asian dust is critical for revealing the mechanism of the dust production, interpreting the paleo-environrnental records of eolian deposits, predicting the overall environmental effects of dust, and setting the strategies for the control of contemporary dust storms. This paper summarizes the geochemical methods applied to the source tracing of Asian dust. Nd-Sr isotopes were the most extensively studied source tracer of Asian dust and have been successfully applied in many cases. Geochemistry of detrital monomineral shows great theoretical advantages in source tracing and deserves further studies. The short-range transportation of Chinese loess with direction similar to that of the prevailing near surface wind is revealed. Source tracing also shows that the Asian dust has two ultimate material sources from the northern margin of the Tibetan Plateau and the Central Asian Orogen, which confirms the importance of mountain processes in the production of silt eolian particles. Based on the recent progresses on the source tracing of Asian dust, discussions are expanded on the natural background of Asian dust storms and potential anthropogenic influence, the materials evolution of the source regions of Asian dust and its relationships with climate changes and Tibetan uplift, and the role of Tibetan uplift in the Asian dust system.展开更多
文摘From the mechanical similarity point of view, the centrifugal effect, Ar, and the Stokes number, St, as well as the Reynolds number, Re_c for the motion of solid particles in the cyclone are the relevant parameters. In order to apply these similarity laws for the prediction of the characteristics of the collection efficiency, ηc, geometrically similar types of uni-flow cyclones were used. The body diameters of the cyclones were D_1=30, 50, 69 and 99 mm, respectively. The feed particle concentration of the fly-ash particles was up to C_o = 60g/m^3. From the experimental results: (1) the pressure drop, △pc, in the cyclones was a function of not only the Reynods number, Re_c, but also the body diameter, D_1; (2) the collection efficiency, η_c, did not always increase with decreasing body diameter but there existed an optimal body size; (3) application of the mechanical similarity laws to the collection efficiency was not always sufficient for estimating the collection efficiency, since the feed particle concentration was an additional important factor; (4) a new parameter which was the ratio, E_(pf), of the apparent separation energy, W_p, of the solid particles to the energy loss, E_c, of the gas flow in the cyclone was introduced for discussing the collection efficiency; (5) Fuchs theory, used to estimate the collection efficiency, was examined. Fuchs theory may be applied for high feed particle concentration.
基金supported by National Natural Science Foundation of China (Grant No. 41021002)
文摘The North China and the neighbouring Mongolia in Asian Interior is characterized by extremely dry climate, resulted in one of the world's major dust emission centres. Deciphering the source region of Asian dust is critical for revealing the mechanism of the dust production, interpreting the paleo-environrnental records of eolian deposits, predicting the overall environmental effects of dust, and setting the strategies for the control of contemporary dust storms. This paper summarizes the geochemical methods applied to the source tracing of Asian dust. Nd-Sr isotopes were the most extensively studied source tracer of Asian dust and have been successfully applied in many cases. Geochemistry of detrital monomineral shows great theoretical advantages in source tracing and deserves further studies. The short-range transportation of Chinese loess with direction similar to that of the prevailing near surface wind is revealed. Source tracing also shows that the Asian dust has two ultimate material sources from the northern margin of the Tibetan Plateau and the Central Asian Orogen, which confirms the importance of mountain processes in the production of silt eolian particles. Based on the recent progresses on the source tracing of Asian dust, discussions are expanded on the natural background of Asian dust storms and potential anthropogenic influence, the materials evolution of the source regions of Asian dust and its relationships with climate changes and Tibetan uplift, and the role of Tibetan uplift in the Asian dust system.