期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种同属性约简算法
1
作者 宋志朋 刘毅 缪刘雨 《计算机工程与应用》 CSCD 2012年第3期52-54,共3页
属性约简是粗糙集理论的核心内容之一,针对现有属性约简算法存在的差别矩阵占用存储空间过大,运算过程对内存要求过高等问题,提出了一种新的同属性约简算法。该算法采用分割技术将原始决策表分割为若干新的子决策表,对子决策表中的元素... 属性约简是粗糙集理论的核心内容之一,针对现有属性约简算法存在的差别矩阵占用存储空间过大,运算过程对内存要求过高等问题,提出了一种新的同属性约简算法。该算法采用分割技术将原始决策表分割为若干新的子决策表,对子决策表中的元素提取属性的共同特征组成特征矩阵,来替换传统的差别矩阵,并在特征矩阵上进行挖掘工作。理论分析和实验结果表明该算法具有较好的约简结果和更高的运算效率。 展开更多
关键词 分割技术 子决策表 同属性约简 特征矩阵
下载PDF
Co-evolutionary cloud-based attribute ensemble multi-agent reduction algorithm
2
作者 丁卫平 王建东 +1 位作者 张晓峰 管致锦 《Journal of Southeast University(English Edition)》 EI CAS 2016年第4期432-438,共7页
In order to improve the performance of the attribute reduction algorithm to deal with the noisy and uncertain large data, a novel co-evolutionary cloud-based attribute ensemble multi-agent reduction(CCAEMR) algorith... In order to improve the performance of the attribute reduction algorithm to deal with the noisy and uncertain large data, a novel co-evolutionary cloud-based attribute ensemble multi-agent reduction(CCAEMR) algorithm is proposed.First, a co-evolutionary cloud framework is designed under the M apReduce mechanism to divide the entire population into different co-evolutionary subpopulations with a self-adaptive scale. Meanwhile, these subpopulations will share their rewards to accelerate attribute reduction implementation.Secondly, a multi-agent ensemble strategy of co-evolutionary elitist optimization is constructed to ensure that subpopulations can exploit any correlation and interdependency between interacting attribute subsets with reinforcing noise tolerance.Hence, these agents are kept within the stable elitist region to achieve the optimal profit. The experimental results show that the proposed CCAEMR algorithm has better efficiency and feasibility to solve large-scale and uncertain dataset problems with complex noise. 展开更多
关键词 co-evolutionary elitist optimization attribute reduction co-evolutionary cloud framework multi-agent ensemble strategy neonatal brain 3D-MRI
下载PDF
Adaptive multicascade attribute reduction based on quantum-inspired mixed co-evolution
3
作者 丁卫平 王建东 +1 位作者 施佺 管致锦 《Journal of Southeast University(English Edition)》 EI CAS 2012年第2期145-150,共6页
Due to the fact that conventional heuristic attribute reduction algorithms are poor in running efficiency and difficult in accomplishing the co-evolutionary reduction mechanism in the decision table, an adaptive multi... Due to the fact that conventional heuristic attribute reduction algorithms are poor in running efficiency and difficult in accomplishing the co-evolutionary reduction mechanism in the decision table, an adaptive multicascade attribute reduction algorithm based on quantum-inspired mixed co-evolution is proposed. First, a novel and efficient self- adaptive quantum rotation angle strategy is designed to direct the participating populations to mutual adaptive evolution and to accelerate convergence speed. Then, a multicascade model of cooperative and competitive mixed co-evolution is adopted to decompose the evolutionary attribute species into subpopulations according to their historical performance records, which can increase the diversity of subpopulations and select some elitist individuals so as to strengthen the sharing ability of their searching experience. So the global optimization reduction set can be obtained quickly. The experimental results show that, compared with the existing algorithms, the proposed algorithm can achieve a higher performance for attribute reduction, and it can be considered as a more competitive heuristic algorithm on the efficiency and accuracy of minimum attribute reduction. 展开更多
关键词 attribute reduction mixed co-evolution self- adaptive quantum rotation angle performance experience record elitist competition pool
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部