设 F 是任意域,M_n 记 F 上 n×n(n≥2)矩阵全体构成的乘法半群.熟知,行列式映射是 M_n 到 F 的乘法同态.本文考虑其反问题,即决定全部从 M_n 到 F 的半群乘法同态,亦即 M_n 的全部积性函数.我们以 Hom(M_n,F)记 M_n 到 F 的乘法同...设 F 是任意域,M_n 记 F 上 n×n(n≥2)矩阵全体构成的乘法半群.熟知,行列式映射是 M_n 到 F 的乘法同态.本文考虑其反问题,即决定全部从 M_n 到 F 的半群乘法同态,亦即 M_n 的全部积性函数.我们以 Hom(M_n,F)记 M_n 到 F 的乘法同态全体构成的集,即若(?)∈Hom(M_n,F),则有(?)(AB)=(?)(A)(?)(B) (?)A、B∈M_n又我们用 GL_n(F)及 SL_n(F)记 F 上一般线性群与特殊线性群.I_n 记 M_n 中单位阵,E_(ij)记 M_n 中(i,j)位置是1,其余位置是0的矩阵。当λ为 F 中非零元素时,F_(ij)(λ)展开更多
The key operation in Elliptic Curve Cryptosystems(ECC) is point scalar multiplication. Making use of Frobenius endomorphism, Muller and Smart proposed two efficient algorithms for point scalar multiplications over eve...The key operation in Elliptic Curve Cryptosystems(ECC) is point scalar multiplication. Making use of Frobenius endomorphism, Muller and Smart proposed two efficient algorithms for point scalar multiplications over even or odd finite fields respectively. This paper reduces the corresponding multiplier by modulo Υk-1 +…+Υ+ 1 and improves the above algorithms. Implementation of our Algorithm 1 in Maple for a given elliptic curve shows that it is at least as twice fast as binary method. By setting up a precomputation table, Algorithm 2, an improved version of Algorithm 1, is proposed. Since the time for the precomputation table can be considered free, Algorithm 2 is about (3/2) log2 q - 1 times faster than binary method for an elliptic curve over展开更多
文摘设 F 是任意域,M_n 记 F 上 n×n(n≥2)矩阵全体构成的乘法半群.熟知,行列式映射是 M_n 到 F 的乘法同态.本文考虑其反问题,即决定全部从 M_n 到 F 的半群乘法同态,亦即 M_n 的全部积性函数.我们以 Hom(M_n,F)记 M_n 到 F 的乘法同态全体构成的集,即若(?)∈Hom(M_n,F),则有(?)(AB)=(?)(A)(?)(B) (?)A、B∈M_n又我们用 GL_n(F)及 SL_n(F)记 F 上一般线性群与特殊线性群.I_n 记 M_n 中单位阵,E_(ij)记 M_n 中(i,j)位置是1,其余位置是0的矩阵。当λ为 F 中非零元素时,F_(ij)(λ)
基金Supported by the National Natural Science Foundation of China(No.90104004) the National 973 High Technology Projects(No.G1998030420)
文摘The key operation in Elliptic Curve Cryptosystems(ECC) is point scalar multiplication. Making use of Frobenius endomorphism, Muller and Smart proposed two efficient algorithms for point scalar multiplications over even or odd finite fields respectively. This paper reduces the corresponding multiplier by modulo Υk-1 +…+Υ+ 1 and improves the above algorithms. Implementation of our Algorithm 1 in Maple for a given elliptic curve shows that it is at least as twice fast as binary method. By setting up a precomputation table, Algorithm 2, an improved version of Algorithm 1, is proposed. Since the time for the precomputation table can be considered free, Algorithm 2 is about (3/2) log2 q - 1 times faster than binary method for an elliptic curve over