Some properties about stable subset S(θ n) and image Im(θ n) of self homomorphism \{θ n:x→0*x n\} are discussed. The characterization that Im(θ n) becomes an ideal of BCI algebra X is given.
In this paper, the half-strong, the locally strong and the quasi-strong endomorphisms of a split graph are investigated. Let X be a split graph and let End(X), hEnd(X), 1End(X) and qEnd(X) be the endomorphism ...In this paper, the half-strong, the locally strong and the quasi-strong endomorphisms of a split graph are investigated. Let X be a split graph and let End(X), hEnd(X), 1End(X) and qEnd(X) be the endomorphism monoid, the set of all half-strong endomorphisms, the set of all locally strong endomorphisms and the set of all quasi-strong endomorphisms of X, respectively. The conditions under which hEnd(X) forms a submonoid of End(X) are given. It is shown that 1End(X) = qEnd(X) for any split graph X. The conditions under which 1End(X) (resp. qEnd(X)) forms a submonoid of End(X) are also given. In particular, if hEnd(X) forms a monoid, then 1End(X) (resp. qEnd(X)) forms a monoid too.展开更多
文摘Some properties about stable subset S(θ n) and image Im(θ n) of self homomorphism \{θ n:x→0*x n\} are discussed. The characterization that Im(θ n) becomes an ideal of BCI algebra X is given.
基金supported by National Natural Science Foundation of China(Grant Nos. 10571077,10971086)
文摘In this paper, the half-strong, the locally strong and the quasi-strong endomorphisms of a split graph are investigated. Let X be a split graph and let End(X), hEnd(X), 1End(X) and qEnd(X) be the endomorphism monoid, the set of all half-strong endomorphisms, the set of all locally strong endomorphisms and the set of all quasi-strong endomorphisms of X, respectively. The conditions under which hEnd(X) forms a submonoid of End(X) are given. It is shown that 1End(X) = qEnd(X) for any split graph X. The conditions under which 1End(X) (resp. qEnd(X)) forms a submonoid of End(X) are also given. In particular, if hEnd(X) forms a monoid, then 1End(X) (resp. qEnd(X)) forms a monoid too.