Stable isotope values of oxygen (180) and hydrogen (2H) of surface waters were used to study the origin and environmental significanees in the Issyk-Kul basin of Kyrgyzstan in Central Asia, which is the most impor...Stable isotope values of oxygen (180) and hydrogen (2H) of surface waters were used to study the origin and environmental significanees in the Issyk-Kul basin of Kyrgyzstan in Central Asia, which is the most important intermountain basin in the modern Tien Shan orogen. This study is the first analysis of hydrochemical spatial differentiation in the stable isotopes of surface waters in this watershed. 75 samples were collected from rivers, springs, lakes, rain and snow during the rainy season in July and August of 2o16. Stable isotopes of 180 and 2H were studied for all samples, and cation ratios (Sr/Ca and Mg/Ca) were also determined for lake water samples. Stable isotope values from precipitation scattered around the Local Meteoric Water Line (determined from Urumqi Station of the global network of isotopes in precipitation (GNIP)), together with values of the Deuterium excess parameter (d) from 15.3‰ to 30.5‰, with an average of 19.8‰, indicating that the moisture sources are primarily from regions with low relative humidity. The 8180 and 52H values were significantly different between the river and lake samples, indicating that regional evaporation caused the isotopic enrichment of lake water. Geospatial autocorrelation, measured by Moran's I coefficient, indicated weak spatial autocorrelation within stable isotopes of oxygen and hydrogen in the surface waters of the studied area, which is primarily an effect of climate during the water chemistry evolution. The cation ratios Sr/Ca and Mg/Ca in lake water samples were not correlated with the concentration of total dissolved solids, but did show correlation with stable isotopic values, which is significant for paleoenvironmental reconstruction.展开更多
Up to now, the evaporation and condensation, as well as the biological absorption and inorganic absorptions, have been proved to be major factors in Cd isotope fractionation. And Cd isotopes have been widely applied i...Up to now, the evaporation and condensation, as well as the biological absorption and inorganic absorptions, have been proved to be major factors in Cd isotope fractionation. And Cd isotopes have been widely applied in studies on the universal evolution and marine environment and so on. However, only a few researches have been conducted in applying Cd isotopes to trace the source of metallogenic material and the evolution of the ore-forming fluid in a complex mineralization environment, especially in a hydrothermal ore-formation system. We measured the Cd isotopic compositions of sphalerite, galena, and ores from five lead-zinc deposits in SW China, and found that the ~14/11~Cd values varied from -1.53%o to 0.34%0, with a total range of 1.87%o, which is greater than most of measured geological samples. Meanwhile, through contrasting the Cd content with Cd isotopic compositions of different deposits, it may be concluded that different genetic lead-zinc deposits have different Cd content and isotopic compositions, which could be a tool for the studies on the origin of ore deposits. Also, the biominera]iza- tion and crystal fractionation may also result in Cd isotope fractionation. In a word, although the research of Cd isotopes is presently at the preliminary stage (especially in hydrothermal ore-formation system), this study demonstrated that Cd isotopes can give a clue in tracing the evolution of ore-forming fluid and metallogenic environment.展开更多
LA-ICP-MS zircon U-Pb isotopic dating and rock geochemical analysis were done of the Xarru granite in the middle section of the Yarlung Zangbo junction zone. Zircon 2-6pb/Z38u weighted mean ages of 474.9±2.3 and ...LA-ICP-MS zircon U-Pb isotopic dating and rock geochemical analysis were done of the Xarru granite in the middle section of the Yarlung Zangbo junction zone. Zircon 2-6pb/Z38u weighted mean ages of 474.9±2.3 and 478.3±1.7 Ma have been obtained for two gneiss granite samples respectively, which represent the formation age of the granite. This is the first discovery of the Early Ordovician magmatism in the Yarlung Zangbo junction zone. The rocks are high-K calcic-alkalic granite, contain tour- maline but not hornblende, with aluminum saturation index (ASI) of A/CNK〉I.1 (1.10-1.20), and are enriched in Rb, Th and U and relatively depleted in Ba, Nb, Sr, Zr, Ti and Eu. They are strongly peraluminous S-type granite, resulting from partial melting of argillaceous components in the crust in a syn-collisional setting. According to previous studies as well as the analy- sis in this paper, the formation of the Xarru granite is probably related to the Andean-type orogeny in the process of subduction of the Proto-Tethys Ocean towards the Gondwanaland, and it is a product of partial melting of the thickened upper crust as a result of collision between blocks or micro-blocks in the northern margin of the Gondwana supercontinent in the process of oceanic subduction. The Xarru granite is identified as the Early Ordovician granite, indicating that the wall rocks had probably formed in the Cambrian or Precambrian.展开更多
The Yangtze continental nucleus in South China is situated in the Huangling-Shennongjia area in western Hubei Province.It comprises the early Precambrian crystalline basement and generally successive Proterozoic to Ph...The Yangtze continental nucleus in South China is situated in the Huangling-Shennongjia area in western Hubei Province.It comprises the early Precambrian crystalline basement and generally successive Proterozoic to Phanerozoic sedimentary covers.This paper reports a comprehensive Nd isotope study of fine-grained sedimentary rocks from the regional Mesoproterozoic to early Paleozoic strata.The Nd model ages display a V-shaped variation from ~2.5-2.8 Ga during the late Mesoproterozoic through ~1.5-1.7 Ga during the Neoproterozoic Nanhua Period to ~1.8-2.1 Ga during the Paleozoic Ordovician,with corresponding Nd (t) ranges of 11 to 14,1.1 to 5.3,and 7.9 to 9.9,respectively.This evolutionary trend broadly resembles those documented in the sedimentary strata along the southeastern margin of the Yangtze Craton and within the Jiangnan orogenic belt,indicating that the whole South China block underwent a mantle-input related tectono-magmatic event at ~0.8 Ga or earlier.However,the Huangling-Shennongjia area is discriminated from the other two regions by highly variable model ages (~1.5-2.7 Ga) and Nd (t) values (1.38-12.0) of the early Mesoproterozoic strata.Combined with the Archean model ages of the late Mesoproterozoic strata,it is suggested that the Mesoproterozoic sedimentary provenance of the Yangtze continental nucleus was distinct from that of the southeastern Yangtze Craton,likely indicative of an intervening aulacogen (or rift zone) or oceanic basin.In addition,the high comparability in Neoproterozoic to Paleozoic Nd isotope stratigraphy between the Yangtze Craton and the Jiangnan orogenic belt infers that the whole South China block had shared the same sedimentary basin and provenance since the Yangtze-Cathaysia welding at ~0.9 Ga.Thus,it is proposed that the Yangtze Craton had comprised a collage of micro-continents during the pre-Neoproterozoic until the Rodinia assemblage when the primitive South China block was formed.展开更多
The samples from the hidden Daqiling muscovite monzonite granite, which has recently been recognized within the Limu Sn-polymetallic ore field, have been analyzed for zircon U-Pb ages and whole rock geochemical and Nd...The samples from the hidden Daqiling muscovite monzonite granite, which has recently been recognized within the Limu Sn-polymetallic ore field, have been analyzed for zircon U-Pb ages and whole rock geochemical and Nd-Hf isotopic compositions to discuss its genesis, source, and tectonic setting. LA-ICP-MS zircon U-Pb dating indicates that the granite crystallized in the late Indosinian(224.8±1.6 Ma). The granite is enriched in SiO2 and K2 O and low in CaO and Na2 O. It is strongly peraluminous with the A/CNK values of 1.09–1.20 and 1.4 vol%–2.7 vol% normal corundum. Chondrite-normalized REE patterns show slightly right-dipping shape with strongly negative Eu anomalies(δEu =0.08–0.17). All samples show enrichment of LILEs(Cs, Rb and K) and HFSEs(U, Pb, Ce and Hf), but have relatively low contents of Ba, Sr and Ti. The zircon saturation temperatures(Tzr) are from 711 to 740°C, which are slightly lower than the average value of typical S-type granite(764°C). The granite has negative εNd(t) and εHf(t) values, which change from ?9.1 to ?10.1 with the peak values of ?9.2 to ?9.0 and from ?3.7 to ?12.6 with the peak values of ?6 to ?5, respectively. The C DMT(Nd) and C DMT(Hf) values are 1.74–1.82 Ga with the peak values of 1.73–1.75 Ga and 1.49–2.04 Ga with the peak values of 1.5–1.6 Ga, respectively. These characteristics reveal that the source region of the granite is dominantly late Paleoproterozoic to early Mesoproterozoic crustal materials. Seven inherited magmatic zircons are dated at the age of 248.6±4.3 Ma, which suggests the existence of the early Indosinian granite in Limu area. These zircons have the εHf(t) values of ?6.7– ?2.3, similar to those of the Daqiling granite, implying the involvement of the early Indosinian granite during the formation of the Daqiling granite. Inherited zircon of 945±11 Ma has the εHf(t) and TDM(Hf) values of 8.7 and 1.14 Ga, respectively, compatible with those of the Neoproterozoic arc magmatic rocks in the eastern Jiangnan orogenic belt. Therefore we inferred that Neoproterozoic arc magma might have been involved in the formation of the Daqiling granite, and that the Neoproterozoic arc magma belt and continent-arc collision belt between the Yangtze and Cathaysia Blocks might have extended westsouthward to Limu region. It is proposed that the underplating of mantle materials triggered by crustal extension and thinning resulted in partial melting of crustal materials to form the Daqiling granite in the late Indosinian under post-collisional tectonic setting.展开更多
Suizhou-Zaoyang area is located in the southern Qinling-Tongbai-Dabie Orogen, China. A combined research on U-Pb ages and Lu-Hf isotopes for detrital zircons from three meta-sedimentary rocks in the Wudang Group is re...Suizhou-Zaoyang area is located in the southern Qinling-Tongbai-Dabie Orogen, China. A combined research on U-Pb ages and Lu-Hf isotopes for detrital zircons from three meta-sedimentary rocks in the Wudang Group is reported. The upper Wudang Group has a major age population of ca. 750 Ma and a sub-major of ca. 860 Ma. But the lower part only yields one age peak at ca. 2.03 Ga. In situ Lu-Hf analyses of the young age group of ca. 750 Ma for zircons from the upper Wudang Group yield an average εHt(t) value of -8.6 and two-stage Hf model ages (TDM2) from 1837 to 2230 Ma, respectively. However, zircons from the lower Wudang Group give an average εHf(t) value of 4.5 and TDM1 of 2220±22 Ma, close to the timing of zircon crystallization. Thus, it is suggested that, in the study area, the continental crust grew during the middle Paleoproterozoic and reworked during the middle Neoproterozoic, which shows the affinity to the Dabie Orogen. In addition, in the lower Wudang Group, two metamorphic zircon ages of 1992±91 and 1999±61 Ma are consistent with that of the middle Paleoproterozoic metamorphism event in the northern Yangtze Block, which may represent the assemblage of the Columbia Supercontinent. On the basis of the U-Pb ages and Hf isotopes, it is proposed that Suizhou-Zaoyang area was involved in the subduction-collision event in the middle Paleoproterozoic and the Yangtze Block was one of the components of the Paleo-Mesoproterozoic supercontinent.展开更多
基金supported by the Science and Technology Service Network Fund Project in the Chinese Academy of Sciences (TSS-2015-014-FW1-2)National Natural Science Foundation of China (U1603242+2 种基金 41471173)West Light Foundation of the Chinese Academy of Sciences (2016-QNXZ-A4)Youth Innovation Promotion Association, Chinese Academy of Sciences (2014390)
文摘Stable isotope values of oxygen (180) and hydrogen (2H) of surface waters were used to study the origin and environmental significanees in the Issyk-Kul basin of Kyrgyzstan in Central Asia, which is the most important intermountain basin in the modern Tien Shan orogen. This study is the first analysis of hydrochemical spatial differentiation in the stable isotopes of surface waters in this watershed. 75 samples were collected from rivers, springs, lakes, rain and snow during the rainy season in July and August of 2o16. Stable isotopes of 180 and 2H were studied for all samples, and cation ratios (Sr/Ca and Mg/Ca) were also determined for lake water samples. Stable isotope values from precipitation scattered around the Local Meteoric Water Line (determined from Urumqi Station of the global network of isotopes in precipitation (GNIP)), together with values of the Deuterium excess parameter (d) from 15.3‰ to 30.5‰, with an average of 19.8‰, indicating that the moisture sources are primarily from regions with low relative humidity. The 8180 and 52H values were significantly different between the river and lake samples, indicating that regional evaporation caused the isotopic enrichment of lake water. Geospatial autocorrelation, measured by Moran's I coefficient, indicated weak spatial autocorrelation within stable isotopes of oxygen and hydrogen in the surface waters of the studied area, which is primarily an effect of climate during the water chemistry evolution. The cation ratios Sr/Ca and Mg/Ca in lake water samples were not correlated with the concentration of total dissolved solids, but did show correlation with stable isotopic values, which is significant for paleoenvironmental reconstruction.
基金supported by National Basic Research Program of China(Grant No.2009CB421005)Chinese Academy of Sciences for Key Topics in Innovation Engineering(Grant No.KZCX2-YW-Q04-01)
文摘Up to now, the evaporation and condensation, as well as the biological absorption and inorganic absorptions, have been proved to be major factors in Cd isotope fractionation. And Cd isotopes have been widely applied in studies on the universal evolution and marine environment and so on. However, only a few researches have been conducted in applying Cd isotopes to trace the source of metallogenic material and the evolution of the ore-forming fluid in a complex mineralization environment, especially in a hydrothermal ore-formation system. We measured the Cd isotopic compositions of sphalerite, galena, and ores from five lead-zinc deposits in SW China, and found that the ~14/11~Cd values varied from -1.53%o to 0.34%0, with a total range of 1.87%o, which is greater than most of measured geological samples. Meanwhile, through contrasting the Cd content with Cd isotopic compositions of different deposits, it may be concluded that different genetic lead-zinc deposits have different Cd content and isotopic compositions, which could be a tool for the studies on the origin of ore deposits. Also, the biominera]iza- tion and crystal fractionation may also result in Cd isotope fractionation. In a word, although the research of Cd isotopes is presently at the preliminary stage (especially in hydrothermal ore-formation system), this study demonstrated that Cd isotopes can give a clue in tracing the evolution of ore-forming fluid and metallogenic environment.
基金supported by China Geologi-cal Survey Project(Grant No.1212011086039)
文摘LA-ICP-MS zircon U-Pb isotopic dating and rock geochemical analysis were done of the Xarru granite in the middle section of the Yarlung Zangbo junction zone. Zircon 2-6pb/Z38u weighted mean ages of 474.9±2.3 and 478.3±1.7 Ma have been obtained for two gneiss granite samples respectively, which represent the formation age of the granite. This is the first discovery of the Early Ordovician magmatism in the Yarlung Zangbo junction zone. The rocks are high-K calcic-alkalic granite, contain tour- maline but not hornblende, with aluminum saturation index (ASI) of A/CNK〉I.1 (1.10-1.20), and are enriched in Rb, Th and U and relatively depleted in Ba, Nb, Sr, Zr, Ti and Eu. They are strongly peraluminous S-type granite, resulting from partial melting of argillaceous components in the crust in a syn-collisional setting. According to previous studies as well as the analy- sis in this paper, the formation of the Xarru granite is probably related to the Andean-type orogeny in the process of subduction of the Proto-Tethys Ocean towards the Gondwanaland, and it is a product of partial melting of the thickened upper crust as a result of collision between blocks or micro-blocks in the northern margin of the Gondwana supercontinent in the process of oceanic subduction. The Xarru granite is identified as the Early Ordovician granite, indicating that the wall rocks had probably formed in the Cambrian or Precambrian.
基金supported by National Natural ScienceFoundation of China (Grant Nos. 40673025,40873017 and 40821061)the Three Gorges Research Center for Geo-Hazard,Ministry of Education,China University of Geosciences
文摘The Yangtze continental nucleus in South China is situated in the Huangling-Shennongjia area in western Hubei Province.It comprises the early Precambrian crystalline basement and generally successive Proterozoic to Phanerozoic sedimentary covers.This paper reports a comprehensive Nd isotope study of fine-grained sedimentary rocks from the regional Mesoproterozoic to early Paleozoic strata.The Nd model ages display a V-shaped variation from ~2.5-2.8 Ga during the late Mesoproterozoic through ~1.5-1.7 Ga during the Neoproterozoic Nanhua Period to ~1.8-2.1 Ga during the Paleozoic Ordovician,with corresponding Nd (t) ranges of 11 to 14,1.1 to 5.3,and 7.9 to 9.9,respectively.This evolutionary trend broadly resembles those documented in the sedimentary strata along the southeastern margin of the Yangtze Craton and within the Jiangnan orogenic belt,indicating that the whole South China block underwent a mantle-input related tectono-magmatic event at ~0.8 Ga or earlier.However,the Huangling-Shennongjia area is discriminated from the other two regions by highly variable model ages (~1.5-2.7 Ga) and Nd (t) values (1.38-12.0) of the early Mesoproterozoic strata.Combined with the Archean model ages of the late Mesoproterozoic strata,it is suggested that the Mesoproterozoic sedimentary provenance of the Yangtze continental nucleus was distinct from that of the southeastern Yangtze Craton,likely indicative of an intervening aulacogen (or rift zone) or oceanic basin.In addition,the high comparability in Neoproterozoic to Paleozoic Nd isotope stratigraphy between the Yangtze Craton and the Jiangnan orogenic belt infers that the whole South China block had shared the same sedimentary basin and provenance since the Yangtze-Cathaysia welding at ~0.9 Ga.Thus,it is proposed that the Yangtze Craton had comprised a collage of micro-continents during the pre-Neoproterozoic until the Rodinia assemblage when the primitive South China block was formed.
基金supported by National Key Basic Research Program of China (Grant No. 2012CB416702)National Natural Science Foundation of China (Grant No. 41230315)China Geological Survey Program (Grant No. 1212011085407)
文摘The samples from the hidden Daqiling muscovite monzonite granite, which has recently been recognized within the Limu Sn-polymetallic ore field, have been analyzed for zircon U-Pb ages and whole rock geochemical and Nd-Hf isotopic compositions to discuss its genesis, source, and tectonic setting. LA-ICP-MS zircon U-Pb dating indicates that the granite crystallized in the late Indosinian(224.8±1.6 Ma). The granite is enriched in SiO2 and K2 O and low in CaO and Na2 O. It is strongly peraluminous with the A/CNK values of 1.09–1.20 and 1.4 vol%–2.7 vol% normal corundum. Chondrite-normalized REE patterns show slightly right-dipping shape with strongly negative Eu anomalies(δEu =0.08–0.17). All samples show enrichment of LILEs(Cs, Rb and K) and HFSEs(U, Pb, Ce and Hf), but have relatively low contents of Ba, Sr and Ti. The zircon saturation temperatures(Tzr) are from 711 to 740°C, which are slightly lower than the average value of typical S-type granite(764°C). The granite has negative εNd(t) and εHf(t) values, which change from ?9.1 to ?10.1 with the peak values of ?9.2 to ?9.0 and from ?3.7 to ?12.6 with the peak values of ?6 to ?5, respectively. The C DMT(Nd) and C DMT(Hf) values are 1.74–1.82 Ga with the peak values of 1.73–1.75 Ga and 1.49–2.04 Ga with the peak values of 1.5–1.6 Ga, respectively. These characteristics reveal that the source region of the granite is dominantly late Paleoproterozoic to early Mesoproterozoic crustal materials. Seven inherited magmatic zircons are dated at the age of 248.6±4.3 Ma, which suggests the existence of the early Indosinian granite in Limu area. These zircons have the εHf(t) values of ?6.7– ?2.3, similar to those of the Daqiling granite, implying the involvement of the early Indosinian granite during the formation of the Daqiling granite. Inherited zircon of 945±11 Ma has the εHf(t) and TDM(Hf) values of 8.7 and 1.14 Ga, respectively, compatible with those of the Neoproterozoic arc magmatic rocks in the eastern Jiangnan orogenic belt. Therefore we inferred that Neoproterozoic arc magma might have been involved in the formation of the Daqiling granite, and that the Neoproterozoic arc magma belt and continent-arc collision belt between the Yangtze and Cathaysia Blocks might have extended westsouthward to Limu region. It is proposed that the underplating of mantle materials triggered by crustal extension and thinning resulted in partial melting of crustal materials to form the Daqiling granite in the late Indosinian under post-collisional tectonic setting.
基金supported by the National Natural Sciences Foundation of China(Grants Nos.41172189,40972137,and 41402179)
文摘Suizhou-Zaoyang area is located in the southern Qinling-Tongbai-Dabie Orogen, China. A combined research on U-Pb ages and Lu-Hf isotopes for detrital zircons from three meta-sedimentary rocks in the Wudang Group is reported. The upper Wudang Group has a major age population of ca. 750 Ma and a sub-major of ca. 860 Ma. But the lower part only yields one age peak at ca. 2.03 Ga. In situ Lu-Hf analyses of the young age group of ca. 750 Ma for zircons from the upper Wudang Group yield an average εHt(t) value of -8.6 and two-stage Hf model ages (TDM2) from 1837 to 2230 Ma, respectively. However, zircons from the lower Wudang Group give an average εHf(t) value of 4.5 and TDM1 of 2220±22 Ma, close to the timing of zircon crystallization. Thus, it is suggested that, in the study area, the continental crust grew during the middle Paleoproterozoic and reworked during the middle Neoproterozoic, which shows the affinity to the Dabie Orogen. In addition, in the lower Wudang Group, two metamorphic zircon ages of 1992±91 and 1999±61 Ma are consistent with that of the middle Paleoproterozoic metamorphism event in the northern Yangtze Block, which may represent the assemblage of the Columbia Supercontinent. On the basis of the U-Pb ages and Hf isotopes, it is proposed that Suizhou-Zaoyang area was involved in the subduction-collision event in the middle Paleoproterozoic and the Yangtze Block was one of the components of the Paleo-Mesoproterozoic supercontinent.