针对带时间窗的时间依赖型同时取送货车辆路径问题(Time Dependent Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows,TDVRPSPDTW),本文建立以车辆固定成本、驾驶员成本、燃油消耗及碳排放成本之和为优化...针对带时间窗的时间依赖型同时取送货车辆路径问题(Time Dependent Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows,TDVRPSPDTW),本文建立以车辆固定成本、驾驶员成本、燃油消耗及碳排放成本之和为优化目标的数学模型;并在传统蚁群算法的基础上,利用节约启发式构造初始解初始化信息素,改进状态转移规则,引入局部搜索策略,提出一种带自适应大邻域搜索的混合蚁群算法(Ant Colony Optimization with Adaptive Large Neighborhood Search,ACO-ALNS)进行求解;最后,分别选取基准问题算例和改编生成TDVRPSPDTW算例进行实验。实验结果表明:本文提出的ACO-ALNS算法可有效解决TDVRPSPDTW的基准问题;相较于模拟退火算法和带局部搜索的蚁群算法,本文算法求解得到的总配送成本最优值平均分别改善7.56%和2.90%;另外,相比于仅考虑碳排放或配送时间的模型,本文所构建的模型综合多种因素,总配送成本平均分别降低4.38%和3.18%,可有效提高物流企业的经济效益。展开更多
针对模糊需求下的绿色两级车辆路径问题,以最小化车辆运营成本和油耗成本之和为优化目标,提出一种混合超启发式算法进行求解.首先,考虑两级问题解空间庞大且相互耦合,设计一种聚类分解策略将该问题分解为多个子问题,以合理缩小问题搜索...针对模糊需求下的绿色两级车辆路径问题,以最小化车辆运营成本和油耗成本之和为优化目标,提出一种混合超启发式算法进行求解.首先,考虑两级问题解空间庞大且相互耦合,设计一种聚类分解策略将该问题分解为多个子问题,以合理缩小问题搜索空间;然后,提出增强超启发式分布估计算法(enhanced hyperheuristic estimation of distribution algorithm,EHHEDA)对各个子问题进行求解,进而获得原问题的解.EHHEDA基于超启发式算法框架,在高层策略域设计一种基于三维概率模型的分布估计算法,动态确定由底层操作域中各搜索算子所组成的排列(即高层个体),可有效控制和引导整个算法的搜索行为;同时,在底层操作域设计10种有效邻域搜索算子,并加入重升温操作的模拟退火机制作为问题解(即底层个体)的接受准则,有利于在问题解空间中执行深入搜索.仿真实验结果表明,所提出的算法在大多数测试集上优于近年来用于求解类似问题的算法,验证了所提出算法的有效性.展开更多
文摘针对带时间窗的时间依赖型同时取送货车辆路径问题(Time Dependent Vehicle Routing Problem with Simultaneous Pickup-Delivery and Time Windows,TDVRPSPDTW),本文建立以车辆固定成本、驾驶员成本、燃油消耗及碳排放成本之和为优化目标的数学模型;并在传统蚁群算法的基础上,利用节约启发式构造初始解初始化信息素,改进状态转移规则,引入局部搜索策略,提出一种带自适应大邻域搜索的混合蚁群算法(Ant Colony Optimization with Adaptive Large Neighborhood Search,ACO-ALNS)进行求解;最后,分别选取基准问题算例和改编生成TDVRPSPDTW算例进行实验。实验结果表明:本文提出的ACO-ALNS算法可有效解决TDVRPSPDTW的基准问题;相较于模拟退火算法和带局部搜索的蚁群算法,本文算法求解得到的总配送成本最优值平均分别改善7.56%和2.90%;另外,相比于仅考虑碳排放或配送时间的模型,本文所构建的模型综合多种因素,总配送成本平均分别降低4.38%和3.18%,可有效提高物流企业的经济效益。
文摘针对模糊需求下的绿色两级车辆路径问题,以最小化车辆运营成本和油耗成本之和为优化目标,提出一种混合超启发式算法进行求解.首先,考虑两级问题解空间庞大且相互耦合,设计一种聚类分解策略将该问题分解为多个子问题,以合理缩小问题搜索空间;然后,提出增强超启发式分布估计算法(enhanced hyperheuristic estimation of distribution algorithm,EHHEDA)对各个子问题进行求解,进而获得原问题的解.EHHEDA基于超启发式算法框架,在高层策略域设计一种基于三维概率模型的分布估计算法,动态确定由底层操作域中各搜索算子所组成的排列(即高层个体),可有效控制和引导整个算法的搜索行为;同时,在底层操作域设计10种有效邻域搜索算子,并加入重升温操作的模拟退火机制作为问题解(即底层个体)的接受准则,有利于在问题解空间中执行深入搜索.仿真实验结果表明,所提出的算法在大多数测试集上优于近年来用于求解类似问题的算法,验证了所提出算法的有效性.