期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于自适应同时稀疏表示的鲁棒性目标追踪
被引量:
2
1
作者
李厚彪
樊庆宇
耿广磊
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2018年第1期1-12,共12页
综合考虑高斯噪声和拉普拉斯噪声,并通过拉普拉斯噪声的能量大小自适应的选择稀疏模型,该文提出了基于同时稀疏表示的自适应追踪算法。该算法可以更好的解决目标遮挡、姿势改变、光照变化和背景混杂等追踪问题,且具有更强的鲁棒性。其...
综合考虑高斯噪声和拉普拉斯噪声,并通过拉普拉斯噪声的能量大小自适应的选择稀疏模型,该文提出了基于同时稀疏表示的自适应追踪算法。该算法可以更好的解决目标遮挡、姿势改变、光照变化和背景混杂等追踪问题,且具有更强的鲁棒性。其次提出一种基于子空间学习和无监督学习(K-means)相结合的模板更新方法,该方法一方面可以及时有效地反应目标的状态,另一方面也可以避免模板更新过快而引入较大的误差。然后,利用LASSO算法对该模型做了进一步的改进,并将目前较好的9种追踪算法与该文提出的算法进行比较,实验结果表明该算法在鲁棒性、精确性和实时性方面都得到了较好的改善。
展开更多
关键词
拉普拉斯噪声
鲁棒性
同时稀疏表示
模板更新
无监督学习
下载PDF
职称材料
题名
基于自适应同时稀疏表示的鲁棒性目标追踪
被引量:
2
1
作者
李厚彪
樊庆宇
耿广磊
机构
电子科技大学数学科学学院
出处
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2018年第1期1-12,共12页
基金
国家自然科学基金(51175443)
中央高校基本科研业务费专项资金(ZYGX2016J131
+1 种基金
ZYGX2016J138)
四川省科技支撑计划(2015GZX0002)
文摘
综合考虑高斯噪声和拉普拉斯噪声,并通过拉普拉斯噪声的能量大小自适应的选择稀疏模型,该文提出了基于同时稀疏表示的自适应追踪算法。该算法可以更好的解决目标遮挡、姿势改变、光照变化和背景混杂等追踪问题,且具有更强的鲁棒性。其次提出一种基于子空间学习和无监督学习(K-means)相结合的模板更新方法,该方法一方面可以及时有效地反应目标的状态,另一方面也可以避免模板更新过快而引入较大的误差。然后,利用LASSO算法对该模型做了进一步的改进,并将目前较好的9种追踪算法与该文提出的算法进行比较,实验结果表明该算法在鲁棒性、精确性和实时性方面都得到了较好的改善。
关键词
拉普拉斯噪声
鲁棒性
同时稀疏表示
模板更新
无监督学习
Keywords
Laplace noise
robustness
simultaneous sparse representation
template update
unsupervised learning
分类号
TN911.73 [电子电信—通信与信息系统]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于自适应同时稀疏表示的鲁棒性目标追踪
李厚彪
樊庆宇
耿广磊
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2018
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部