Aroma of Chinese steamed bread(CSB) is one of the important parameters that determines the overall quality attributes and consumer acceptance. However, the aroma profile of CSB still remains poorly understood, mainl...Aroma of Chinese steamed bread(CSB) is one of the important parameters that determines the overall quality attributes and consumer acceptance. However, the aroma profile of CSB still remains poorly understood, mainly because of relying on only a single method for aroma extraction in previous studies. Therefore, the objective of this study was to determine the volatile aroma compounds of five different samples of CSB using three different aroma extraction methods, namely solid-phase microextraction(SPME), simultaneous distillation–extraction(SDE), and purge and trap(PT). All samples showed a unique aroma profile, which could be attributed to their unique microbial consortia.(E)-2-Nonenal and(E,E)-2,4-decadienal were the most prevalent aromatic compounds revealed by SDE, which have not been reported previously, while ethanol and acetic acid proved to be the most dominant compounds by both SPME and PT. Our approach of combining three different aroma extraction methods provided better insights into the aroma profile of CSB, which had remained largely unknown in previous studies.展开更多
基金supported by the National Natural Science Foundation of China(No.31371826)the China Postdoctoral Science Foundation(No.2016M592002)
文摘Aroma of Chinese steamed bread(CSB) is one of the important parameters that determines the overall quality attributes and consumer acceptance. However, the aroma profile of CSB still remains poorly understood, mainly because of relying on only a single method for aroma extraction in previous studies. Therefore, the objective of this study was to determine the volatile aroma compounds of five different samples of CSB using three different aroma extraction methods, namely solid-phase microextraction(SPME), simultaneous distillation–extraction(SDE), and purge and trap(PT). All samples showed a unique aroma profile, which could be attributed to their unique microbial consortia.(E)-2-Nonenal and(E,E)-2,4-decadienal were the most prevalent aromatic compounds revealed by SDE, which have not been reported previously, while ethanol and acetic acid proved to be the most dominant compounds by both SPME and PT. Our approach of combining three different aroma extraction methods provided better insights into the aroma profile of CSB, which had remained largely unknown in previous studies.