In this paper, the bit synchronization algorithms in GNSS receiver are introduced, including the traditional histogram method, K-P algorithm and Viterbi algorithm. The FPGA implementation is also included. A novel tim...In this paper, the bit synchronization algorithms in GNSS receiver are introduced, including the traditional histogram method, K-P algorithm and Viterbi algorithm. The FPGA implementation is also included. A novel time division multiplexing technology (TDM) based on multi-channel shared synchronizer is proposed in this paper to solve the constrained hardware resource problem of multi-system satellite navigation receiver. Through the using of control state machine and data register structure, we realize the multiplexing of bit synchronizer of navigation receiver, which saves the hardware resource. After the experiment, it can be verified that the receiver based on the bit synchronization and multiplexing technology can correctly restore the navigation information.展开更多
In the heterogeneous wireless networks of the next generation, a large number of different radio access technologies will be integrated into a common network. This paper considers optimizing the utilization of spectru...In the heterogeneous wireless networks of the next generation, a large number of different radio access technologies will be integrated into a common network. This paper considers optimizing the utilization of spectrum resource in heterogeneous environment consisting two different networks: wireless local area network (WLAN) and time division-synchronous code division multiple access (TD-SCDMA) network. An optimal joint spectrum borrowing scheme maximizing overall network revenue is proposed with quality of service (QoS) constraints over both the WLAN and the TD-SCDMA cellular networks. Simulation results illustrate that system revenue earned in the proposed joint spectrum borrowing scheme is significantly larger than the case when individual networks are optimized independently.展开更多
基金the National Natural Science Foundation of China under Grant,the China Postdoctoral Science Foundation under Grant No.2013M530526,the Fundamental Research Funds for the Central Universities under Grant No.FRF-TP-14-046A2
文摘In this paper, the bit synchronization algorithms in GNSS receiver are introduced, including the traditional histogram method, K-P algorithm and Viterbi algorithm. The FPGA implementation is also included. A novel time division multiplexing technology (TDM) based on multi-channel shared synchronizer is proposed in this paper to solve the constrained hardware resource problem of multi-system satellite navigation receiver. Through the using of control state machine and data register structure, we realize the multiplexing of bit synchronizer of navigation receiver, which saves the hardware resource. After the experiment, it can be verified that the receiver based on the bit synchronization and multiplexing technology can correctly restore the navigation information.
基金Supported by the National Natural Science Foundation of China (60832009), the Natural Sciences Foundation of Beijing (4102044), the Fundamental Research Funds for the Central Universities (BUPT2009RC019), and the National Major Prefects for Science and Technology Development (2009ZX03003-003-01).
文摘In the heterogeneous wireless networks of the next generation, a large number of different radio access technologies will be integrated into a common network. This paper considers optimizing the utilization of spectrum resource in heterogeneous environment consisting two different networks: wireless local area network (WLAN) and time division-synchronous code division multiple access (TD-SCDMA) network. An optimal joint spectrum borrowing scheme maximizing overall network revenue is proposed with quality of service (QoS) constraints over both the WLAN and the TD-SCDMA cellular networks. Simulation results illustrate that system revenue earned in the proposed joint spectrum borrowing scheme is significantly larger than the case when individual networks are optimized independently.