Multi-agent systems arise from diverse fields in natural and artificial systems, and a basic problem is to understand how locally interacting agents lead to collective behaviors (e.g., synchronization) of the overal...Multi-agent systems arise from diverse fields in natural and artificial systems, and a basic problem is to understand how locally interacting agents lead to collective behaviors (e.g., synchronization) of the overall system. In this paper, we will consider a basic class of multi-agent systems that are described by a simplification of the well-known Vicsek model. This model looks simple, but the rigorous theoretical analysis is quite complicated, because there are strong nonlinear interactions among the agents in the model. In fact, most of the existing results on synchronization need to impose a certain connectivity condition on the global behaviors of the agents' trajectories (or on the closed-loop dynamic neighborhood graphs), which are quite hard to verify in general. In this paper, by introducing a probabilistic framework to this problem, we will provide a complete and rigorous proof for the fact that the overall multi-agent system will synchronize with large probability as long as the number of agents is large enough. The proof is based on a detailed analysis of both the dynamical properties of the nonlinear system evolution and the asymptotic properties of the spectrum of random geometric graphs.展开更多
基金The research is supported by National Natural Science Foundation of China under the Grants No. 60221301 and No. 60334040.Acknowledgement The authors would like to thank Prof. Feng TIAN and Dr. Mei LU for providing the proof of Lemma 6 in Appendix B. We would also like to thank Ms. Zhixin Liu for valuable discussions.
文摘Multi-agent systems arise from diverse fields in natural and artificial systems, and a basic problem is to understand how locally interacting agents lead to collective behaviors (e.g., synchronization) of the overall system. In this paper, we will consider a basic class of multi-agent systems that are described by a simplification of the well-known Vicsek model. This model looks simple, but the rigorous theoretical analysis is quite complicated, because there are strong nonlinear interactions among the agents in the model. In fact, most of the existing results on synchronization need to impose a certain connectivity condition on the global behaviors of the agents' trajectories (or on the closed-loop dynamic neighborhood graphs), which are quite hard to verify in general. In this paper, by introducing a probabilistic framework to this problem, we will provide a complete and rigorous proof for the fact that the overall multi-agent system will synchronize with large probability as long as the number of agents is large enough. The proof is based on a detailed analysis of both the dynamical properties of the nonlinear system evolution and the asymptotic properties of the spectrum of random geometric graphs.