In this paper, a distributed control strategy is proposed to make a complex dynamical network achieve cluster synchronization, which means that nodes in the same group achieve the same synchronization state, while nod...In this paper, a distributed control strategy is proposed to make a complex dynamical network achieve cluster synchronization, which means that nodes in the same group achieve the same synchronization state, while nodes in different groups achieve different synchronization states. The local and global stability of the cluster synchronization state are analyzed. Moreover, simulation results verify the effectiveness of the new approach.展开更多
This paper deals with the synchronization of chaotic systems with structure or parameters difference. Nonlinear differential geometry theory was applied to transform the chaotic discrepancy system into canonical form....This paper deals with the synchronization of chaotic systems with structure or parameters difference. Nonlinear differential geometry theory was applied to transform the chaotic discrepancy system into canonical form. A feedback control for synchronizing two chaotic systems is proposed based on sliding mode control design. To make this controller physically realizable, an extended state observer is used to estimate the error between the transmitter and receiver. Two illustrative examples were carried out: (1) The Chua oscillator was used to show that synchronization was achieved and the message signal was recovered in spite of parametric variations; (2) Two second-order driven oscillators were presented to show that the synchronization can be achieved and that the message can be recovered in spite of the strictly different model.展开更多
A function projective synchronization of two identical hyperchaotic systems is defined and the theorem of sufficient condition is given. Based on the active control method and symbolic computation Maple, the scheme of...A function projective synchronization of two identical hyperchaotic systems is defined and the theorem of sufficient condition is given. Based on the active control method and symbolic computation Maple, the scheme of function projective synchronization is developed to synchronize the two identical new hyperchaotic systems constructed by Yan up to a scaling function matrix with different initial values. Numerical simulations are used to verify the effectiveness of the scheme.展开更多
In this paper, we propose a new input-to-state stable (ISS) synchronization method for chaotic behavior in nonlinear Bloch equations with external disturbance. Based on Lyapunov theory and linear matrix inequality ...In this paper, we propose a new input-to-state stable (ISS) synchronization method for chaotic behavior in nonlinear Bloch equations with external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) approach, for the first time, the ISS synchronization controller is presented to not only guarantee the asymptotic synchronization but also achieve the bounded synchronization error for any bounded disturbance. The proposed controller can be obtained by solving a convex optimization problem represented by the LMI. Simulation study is presented to demonstrate the effectiveness of the proposed synchronization scheme.展开更多
In this study, a new controller for chaos synchronization is proposed. It consists of a state feedback controller and a robust control term using Legendre polynomials to compensate for uncertainties. The truncation er...In this study, a new controller for chaos synchronization is proposed. It consists of a state feedback controller and a robust control term using Legendre polynomials to compensate for uncertainties. The truncation error is also considered. Due to the orthogonal functions theorem, Legendre polynomials can approximate nonlinear functions with arbitrarily small approximation errors. As a result, they can replace fuzzy systems and neural networks to estimate and compensate for uncertainties in control systems. Legendre polynomials have fewer tuning parameters than fuzzy systems and neural networks. Thus, their tuning process is simpler. Similar to the parameters of fuzzy systems, Legendre coefficients are estimated online using the adaptation rule obtained from the stability analysis. It is assumed that the master and slave systems are the Lorenz and Chen chaotic systems, respectively. In secure communication systems, observer-based synchronization is required since only one state variable of the master system is sent through the channel. The use of observer-based synchronization to obtain other state variables is discussed. Simulation results reveal the effectiveness of the proposed approach. A comparison with a fuzzy sliding mode controller shows that the proposed controller provides a superior transient response. The problem of secure communications is explained and the controller performance in secure communications is examined.展开更多
基金supported by the Natural Science Foundation of Hohai University under Grant No.2008429211
文摘In this paper, a distributed control strategy is proposed to make a complex dynamical network achieve cluster synchronization, which means that nodes in the same group achieve the same synchronization state, while nodes in different groups achieve different synchronization states. The local and global stability of the cluster synchronization state are analyzed. Moreover, simulation results verify the effectiveness of the new approach.
基金Project (No. 20040146) supported by Zhejiang Provincial Edu-cation Department Foundation, China
文摘This paper deals with the synchronization of chaotic systems with structure or parameters difference. Nonlinear differential geometry theory was applied to transform the chaotic discrepancy system into canonical form. A feedback control for synchronizing two chaotic systems is proposed based on sliding mode control design. To make this controller physically realizable, an extended state observer is used to estimate the error between the transmitter and receiver. Two illustrative examples were carried out: (1) The Chua oscillator was used to show that synchronization was achieved and the message signal was recovered in spite of parametric variations; (2) Two second-order driven oscillators were presented to show that the synchronization can be achieved and that the message can be recovered in spite of the strictly different model.
基金*The project supported by the Natural Science Foundations of Zhejiang Province under Grant No. Y604056 and the Doctoral Foundation of Ningbo City under Grant No. 2005A61030
文摘A function projective synchronization of two identical hyperchaotic systems is defined and the theorem of sufficient condition is given. Based on the active control method and symbolic computation Maple, the scheme of function projective synchronization is developed to synchronize the two identical new hyperchaotic systems constructed by Yan up to a scaling function matrix with different initial values. Numerical simulations are used to verify the effectiveness of the scheme.
文摘In this paper, we propose a new input-to-state stable (ISS) synchronization method for chaotic behavior in nonlinear Bloch equations with external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) approach, for the first time, the ISS synchronization controller is presented to not only guarantee the asymptotic synchronization but also achieve the bounded synchronization error for any bounded disturbance. The proposed controller can be obtained by solving a convex optimization problem represented by the LMI. Simulation study is presented to demonstrate the effectiveness of the proposed synchronization scheme.
文摘In this study, a new controller for chaos synchronization is proposed. It consists of a state feedback controller and a robust control term using Legendre polynomials to compensate for uncertainties. The truncation error is also considered. Due to the orthogonal functions theorem, Legendre polynomials can approximate nonlinear functions with arbitrarily small approximation errors. As a result, they can replace fuzzy systems and neural networks to estimate and compensate for uncertainties in control systems. Legendre polynomials have fewer tuning parameters than fuzzy systems and neural networks. Thus, their tuning process is simpler. Similar to the parameters of fuzzy systems, Legendre coefficients are estimated online using the adaptation rule obtained from the stability analysis. It is assumed that the master and slave systems are the Lorenz and Chen chaotic systems, respectively. In secure communication systems, observer-based synchronization is required since only one state variable of the master system is sent through the channel. The use of observer-based synchronization to obtain other state variables is discussed. Simulation results reveal the effectiveness of the proposed approach. A comparison with a fuzzy sliding mode controller shows that the proposed controller provides a superior transient response. The problem of secure communications is explained and the controller performance in secure communications is examined.